Automated Theorem Proving

Basic Completion with E-cycle Simplification

Christopher Lynch * and Christelle Scharff **

* Department of Mathematics and Computer Science Box 5815, Clarkson University, Potsdam,
NY 13699-5815, USA - E-mail: Christopher.Lynch@clynch.mcs.clarkson.edu -
http://www.clarkson.edu/~clynch *

** LORIA - CNRS - INRIA Lorraine BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France -
E-mail: Christelle.Scharff@loria.fr - http://www loria.fr/~scharff

Abstract. We give a new simplification method, called E-cycle Simplification, for
Basic Completion inference systems. We prove the completeness of Basic Completion
with E-cycle Simplification. We prove that E-cycle Simplification is strictly stronger
than the only previously known complete simplification method for Basic Completion,
Basic Simplification, in the sense that every derivation involving Basic Simplification
is a derivation involving E-cycle Simplification, but not vice versa. E-cycle Simplifi-
cation is simple to perform, and does not use the reducibility-relative-to condition.
We believe this new method captures exactly what is needed for completeness. ECC
implements our method.

Keywords : Equational Logic, Rewriting, Basic Completion.

1 Introduction

In automated theorem proving, it is important to know if an inference system is complete,
because a complete inference system guarantees that a proof will be found if one exists and if
it halts without a proof, then the theorem is false. However, in practice, incomplete inference
systems are often used because complete ones are not efficient.

An example of this phenomenon is the case of Basic Completion [BGLS95,NR92]. This
is a restriction on Knuth-Bendix Completion [KB70] such that the most general unifier is
saved as a constraint, instead of being applied to the conclusion of an inference [KKR90].
The effect of this restriction is that much of a term is stored in a constraint, and therefore
the variable positions appear closer to the root than in the non-basic case, or else variable
positions occur where there are no variable positions in the non-basic case. In Knuth-Bendix
Completion, there is a restriction that inferences are not allowed at variable positions. This
restriction then becomes much more powerful in Basic Completion. In [BGLS95,NR92], it
was shown that Basic Completion is complete.

Simplification rules are crucial in any form of completion. However, in [NR92] it was
shown that the combination of Basic Completion and Standard Simplification is not complete
(see [BGLS95] for more incompleteness examples). In [BGLS95], a new form of simplification,
called Basic Simplification, is shown to be complete in combination with Basic Completion.
Unfortunately, Basic Simplification can only be performed under certain circumstances. So,
to retain completeness, a theorem prover must either not simplify under these circumstances,

! This work was supported by NSF grant number CCR-9712388 and partially done during a visit
in the PROTHEO group in Nancy.

or else apply the constraint of the simplifying equation before simplifying. The first solution
is unsatisfactory because it does not allow as much simplification. The second solution is
unsatisfactory because it removes the advantages of Basic Completion.

These results lead us to an analysis of simplification strategies for Basic Completion.
The goal is to understand when simplification will destroy completeness and when it will
not. We provide an abstract setting to develop and prove the completeness of a concrete
simplification method for Basic Completion, called E-cycle Simplification, which does not
use the reducibility-relative-to condition of Basic Simplification. We prove that E-cycle Sim-
plification is complete and strictly stronger than Basic Simplification, in the sense that every
derivation involving Basic Simplification is a derivation involving E-cycle Simplification, but
not vice versa (see section 5). Also, there are many examples where E-cycle Simplification
may be performed but Basic Simplification may not (see section 5 for an example) .

The idea behind E-cycle Simplification is simple. No equation may simplify one of its
ancestors 2. In the inference procedure we build a dependency (directed) graph. The nodes
of the dependency graph are labelled by the equations. When we deduce a new equation, we
add a node to the graph labelled by the new equation to show dependencies and ancestors. A
Basic Critical Pair inference adds an Inference edge to indicate that the conclusion depends
on the premises if it has an irreducible constraint. A Simplification adds Simplification
edges. When the rule deduces a constrained equation, Constraint edges are added from the
constrained equation to its original ancestors in E. These dependencies are only needed if
the constraint of the equation is reducible, to be able to create a reduced version of the
constrained equation. Edges are associated with reducibility constraints, which may conflict
with each other. We define E-paths and E-cycles in the dependency graph to be paths and
cycles with no conflict in reducibility constraints. E-cycles may only occur when an equation
simplifies an ancestor. Whenever a simplification would create an E-cycle in the dependency
graph, we disallow the simplification.

Our completeness proof is based on the model construction proof of [BG94], which is
also used in the completeness proofs of Basic Completion in [BGLS95NR92]. Like those
proofs, we build a model of irreducible equations, based on an ordering of the equations.
The difference is that we do not use the multiset extension of the term ordering but a
different ordering >, directly based on the dependency graph. If there is an edge from a
node labelled with equation e; to a node labelled with equation ey, then e; is larger than
ez in our ordering >4 and we write e; >4 e2. The ordering >, is well-founded, because the
dependency graph does not have any E-cycles or infinite E-paths.

The paper is organized as follows. Section 2 contains some definitions and notions useful
for the comprehension of the paper. Section 3 defines dependency graphs, E-cycles, E-cycle
Simplification and the construction of the dependency graphs. In section 4, we show that
Basic Completion with E-cycle Simplification is complete. Then, in section 5, we show that
E-cycle Simplification is strictly more powerful than Basic Simplification.

The full version of this paper that includes complete details and full proofs is available
in [LS97].
2 Preliminaries

We assume the reader is familiar with the notation of equational logic and rewriting. A survey
of rewriting is available in [DJ90]. We only define important notions for the comprehension
of the paper and new notions and definitions we introduce.

2 We define the notion of ancestorin the paper.

Let =" be a binary infix predicate. An equational constraint ¢ is a conjunction s; ="
ti A ... Ns, =" t, of syntactic equality s; = t; . T is the true equational constraint
and L is the false constraint. The symbol & is a binary symbol, written in infix notation,
representing semantic equality. In this paper =; will refer to an ordering on terms (> in
its strict version), which is a well-founded reduction ordering total on ground terms. &
is symmetric and, when we write the equality s & ¢, we assume that s £; t. We extend
the ordering »: to ground equations and we call the new ordering >, (=, in its strict
version). Let s & t and u & v be two ground equations. We define the ordering >, such that
s~ t > unvif either s >, uor, s =uand t > v 3 A pair s ~ t[¢] composed of an
equation s & t and an equational constraint ¢ is called a constrained equation. An equation
so & to is a ground instance of a constrained equation ¢[¢] if o is a ground substitution
solution of ¢. We denote by Gr(e[¢]) the set of ground instances of an equation e[¢].
This is extended to a set £ by Gr(F) = [J,cp Gr(e). We call ed1[2] a retract form of a
constrained equation e[¢] if ¢ = mgu(p), o2 = mgu(yp2) and Yo € Dom(c),z0 = zo109.
For example, g(f(y)) ~ by =" a] is a retract of g(z) ~ b[z =" f(a)].

Reducibility Constraints:We define a predicate symbol Red, which is applied to a term.

A reducibility constraint 1s:
- T denoting the empty conjunction and the true reducibility constraint or
- 1 denoting the false reducibility constraint or

- of the form @, A+ Ay, , where ¢, is of the form (V/; Red(t;)) or ~Red(t) or T where
t, t; € T (where T is the set of terms built on a particular signature).

The syntax of the Red predicate is extended in [LS97]. First instances of reducibility
constraints can be found in [Pet94] and in [LS95].

A ground reducibility constraint is a reducibility constraint such that the parameter of
the predicate Red is a ground term. Let ¢, be a ground reducibility constraint, and R be
a ground rewrite system. Then ¢, is satisfiable in R, if and only if one of the following
conditions is true:

- =T,

- ¢r = Red(t) and t is reducible in R.

-, = . and @l is not satisfiable in R.

- r = oh Al and @l and ¢! are satisfiable in R.

- pr = oL V!l and ¢ is satisfiable in R or ¢! is satisfiable in R.

A reducibility constraint ¢, is satisfiable iff there exists a rewrite system R and a ground
substitution ¢ such that ¢,c is satisfiable in R. Satisfiability is a semantic notion. In our

inference procedure, we deal with syntactic objects. For that, we need the notion of consis-
tency.

Definition 1. A reducibility constraint ¢, is inconsistent if and only if, ¢, = L or there
exist ui[t101], -, un[tnoy,] such that o; are substitutions and (Vie{l o) Red(t;)) appears
in ¢, and = Red(u;[t;0:]) (i € {1,---,n}) appear in ¢,.

A reducibility constraint is consistent if and only if it is not inconsistent.

Note that it is simple to test if a reducibility constraint is consistent using this definition.
There is a close relationship between consistency and satisfiability.

Theorem 2. Let ¢, be a reducibility constraint. If ¢, s satisfiable, then ¢, is consistent.

? Recall that s At and u £ v

Let ¢ be an equational constraint. We define RedCon(y) as the reducibility constraint
V{Red(zo) | © € Dom(c) and o = mgu(p)} and, in particular, RedCon(T) = L.

Inference Systems: Our inference system is based on Basic Completion.

The main inference rule of Basic Completion is the Basic Critical Pair inference rule:

Basic Critical Pair
us)~olen] smtles]
? 7 M
uft]mv[s="s"Ap1 Ap2]
— s’ is not a variable,
— there exists a substitution o such that o € Sol((s =7 s') A @1 A @2), so 4 to and
uls’]e £t vo.

Let I' be a set of equations. This inference means that the set of equations {u[s'] ~
v[e1], s~ t[pa]}UT is transformed to {u[s'] m v[p1],s R t[2], ulto] ~ v[s =" s’ A1 A
paJUL

We now present Standard Simplification and Basic Simplification deletion rules.

The Standard Simplification deletion rule is the following:

Standard Simplification
us|mole] smtles]
uftoau] ~ v[e1 Apap]
— s’ is not a variable,

— there exists a substitution u, o1 = mgu(¢1) and o2 = mgu(yps2) such that s'oy = soap,
soap ¢ toop, and voy ¢ toap if u = s'.

Let I' be a set of equations. In this rule, the set of equations {u[s'] & v[p1],s ~
t[2]} U I is transformed to {s ~ t[@2], uftoau] & v[w1 Awau]} U5

Basic Simplification is based on the notion of reduced-relative-to and is described in [BGLS95].

Basic Simplification
us|m o] smtlea]
uftoau] ~ v[e1 Apap]
— s’ is not a variable,

— there exists a match p, o1 = mgu(e1) and o2 = mgu(ps) such that s'oy = soap,
soap > toapu, and voy > toop if u = s, and
— s & t[2] is substitution reduced relative to u[s'] & v[1]

There are two optional but useful rules. If the conditions for the application of Basic
Simplification are not true, it is possible to apply the Retraction rule which consists of re-
tracting the “from” equation of the inference to make the application of Basic Simplification
possible. Basic Blocking is a deletion rule based on the reduced-relative-to condition that
deletes an equation with a reducible constraint.

* In rules, we assume the two premises have disjoint sets of variables. If the two equations share
some variables, we first rename one premise so that they no longer share any variables, before
performing the inference rule. We denote by “into” equation, the equation u[s'] =~ v[¢1], by
“from” equation, the equation s = t[¢2] and by conclusion equation, the deduced equation.

® This formulation resolves the ambiguity of the first notation. The ambiguity can be resolved by
remembering that inference rules add equations, while simplification deletion rules add and delete
an equation.

We call BCPBS the Basic Completion inference system consisting of these two rules plus
Basic Blocking and Retraction. In this paper we give a new Basic Completion inference
system BCPES which uses the Basic Critical Pair rule and a restricted version of the
Standard Simplification rule, that we call E-cycle Simplification. In the full version of
the paper [LS97], BCPES is extended by E-cycle Retraction and E-cycle Blocking rules.

3 E-cycle Simplification

In this section, we describe the framework used in the paper. We first describe the dependency
graph of a set of unconstrained equations F to complete and then we give the definition of
an E-cycle. We describe the way the dependency graph is constructed using the inferences
rules of BCPES using Graph Transitions.

3.1 The dependency graph and E-cycles

The dependency graph is a directed graph. The vertices of the dependency graph are labelled
by equations. We associate a set of vertices C'_ancestor(v) to each vertex. There are three
kinds of edges in the dependency graph: Cedges, I edges and Sedges. Cstands for Constraint,
I stands for Inference and S stands for Simplification. Each edge has a reducibility constraint
associated with it determined by the type of the edge (C, I and S) and the constraints of
equations labelling the vertices at the extremities of the edge.

Let e4 be an edge from a vertex vy labelled by an equation e1[¢1] to a vertex vy labelled
by an equation es] 2] in the dependency graph. If e4 is a C edge, then the constraint asso-
ciated with eq is RedCon(p1). eq is denoted by (v1,va, C). If 4 is an I edge, the constraint
associated with eq is " RedCon(p2). eq4 is denoted by (v1,vs, I). If ¢4 is an S edge, then the
constraint associated with eq is T. eq4 is denoted by (v1, va, S).

An E-pathis a path of C, Iand S edges in the dependency graph such that the conjunction
of the reducibility constraints associated to the edges is consistent. An FE-cycle is an E-
path which begins and ends at the same vertex and which contains at least a C and an
S edge. The problem of finding an E-path and so an E-cycle in the dependency graph is
NP-complete [Her].

3.2 Construction of the dependency graph and E-cycle Simplification

At the beginning of the Basic Completion process, the initial set E is represented by the
initial dependency graph G, that is defined as follows. Each equation of the set of equations
E to complete is a label of a vertex of the initial dependency graph Ginit = (Vinit, E Dinit)
and ED;,is = 0. C_ancestor(v) = {v} for all v € Vi,;;. When an inference of BCPES is
performed, the dependency graph is updated. A new vertex labelled by the conclusion of
the rule is added and edges are added.

We now present the E-cycle Simplification rule and explain how Basic Critical Pair
inferences and E-cycle Simplification update the dependency graph using Graph Transitions.

The BCPES inference system is composed of the Basic Critical Pair Inference rule and
of the following E-cycle Simplification deletion rule.

E-cycle Simplification
us | ~olgr] smilga]
ultosp] ~ vl e A pop] '
— u[s'] ® v[1] can be standard simplified by s & t[¢2] and
— the addition of S edges from the “into” premise to the “from” premise and from the
“into” premise to the conclusion equation does not create an E-cycle in the dependency
graph.

Definition 3. A Graph Transition is denoted by (F;, G;) = (Fit1,Git1), where E; and
Ei41 are sets of equations such that F;y; is obtained from F; by performing a Basic Critical
Pair Inference or a deletion rule ® and G; = (V;, ED;) and Git1 = (Vig1, ED;y1) are
dependency graphs such that G4 is obtained from G; by:

— A Basic Critical Pair Inference.
We have the following Graph Transition ({eg, e1 }UTI', G;) — ({€o, €1, €2}UTI", Gi41) where

€g is the “into” equation, e; is the “from” equation and es is the conclusion equation of
the Basic Critical Pair inference.

Let eg be the label of vg and e; be the label of v;.

- Vit1 = V; U {va} such that label(vy) = eq

-ED;y1 = ED; UE¢c U E; where:

If e, is an unconstrained equation then Es = 0, otherwise Eo =
UUEC_ancestor(vD) (02, v, C) U UUEC_ancestor(vl) (02, v, C)

C_ancestor(vy) = C_ancestor(vg) U C_ancestor(vy).

B)

deletion rile.
We have the following Graph Transition ({eg,e1, -+, en U T, G;) = ({e1,€2, -, en} U
I',Gi41) where eq is removed because of €1, -, e,.
Let ¢; be the label of v; for ¢ € {0,---,n}.
Vi = Vi
- ED;y1 = ED; U Es where:
Es = Ui6{1,~~~,n}(vo’ Vi, S)

We now summarize the above definition. A C edge is created from a constrained equation
to its initial ancestors, initial unconstrained equations of £. An [edge is added from the
vertex labelled by the “into” premise of an inference to the vertex labelled by the conclusion
of the inference. This indicates that the “into” premise depends on the conclusion. We can
notice that E-paths and also E-cycles do not contain an [edge followed by a C edge. This
is due to the reducibility constraints associated to I and C edges. An S edge is from the
simplified equation to the simplifier, and also from the simplified equation to the conclusion
of the simplification. This indicates that the simplified equation depends on the other two.
The dependency graph will not contain an E-cycle, because only a S edge could create an
E-cycle (see theorem 7) and E-cycle Simplification forbids creation of E-cycles.

Definition 4. Given a sequence of equations Ey, E, - - -, the limit E, is | J; ﬂj>i E;. Given
a sequence of graphs Gy, Gy, - - - where G; = (V;, ED;) for all i, the limit Go is (Vo, F Do),
where Vi, =, ﬂj>i V;, label(v) = |, ﬂj>i label(v;) for allv € Voo, and EDo, =, ﬂj>i ED;

6 A Simplification rule consists of a Critical Pair inference that adds an equation plus a deletion
rule.

Definition 5. A Graph Transition Derivation from E is a possibly infinite derivation (Ey =
E Gy = Ginit) = (E1,G1) — ---, where for all 4, (E;,Gi) = (Eit1,Gi+1) 1s a Graph
Transition. The Transition Limit is denoted by Too = (Feo, Goo)-

The two following theorems are consequences of the way the dependency graph is con-
structed. The first theorem proves, in particular, that an E-cycle does not contain only C
edges. The second theorem proves that it is only a deletion rule, so the addition of an S edge
that could create an E-cycle. It also proves that an E-cycle contains at least an S edge.

Theorem 6. An E- cycle does not contain only C edges.

Theorem 7. Let (Eo = E,Go = Gm”) — (El,Gl) — = (En—l;Gn—l) — (En,Gn) ce
be a Graph Transition Deriwation. If G,_1 does not contain an E-cycle and G, contains an
FE-cycle, then E,, was obtained from E,_1 by a deletion rule.

To illustrate BCPES, we now develop the counter-example of Nieuwenhuis and Ru-
bio [NR92], that proves that Basic Completion with Standard Simplification is incomplete.
We adopt the same execution plan.

Ezample 8. Let E = {a~ b (1), f(g(z)) ~,g9(x) (2), f(g(a)) ~ b (3)}. We assume a lexico-
graphic path ordering based on the precedence f >,rec § >prec @ >=prec b.

The dependency graph for the two inferences processed here is in figure 1. The full
development of this example can be found in the full version of the paper [LS97]. The
saturated set, we obtain, is Feo = {a &= b (1), f(g(z)) ~ g(x) (2), f(b) ~ b (5), f(g(b)) ~
b (7),9(x) [z ="b] (8)}.

. flala) ~a(x) (2 flal) %) (3)
g(z) ~ bz ="a] (4)
We add C edges from equation (4) to the initial equations (2) and (3). The reducibility
constraint associated to these edges is Red(a).
We add an [edge from equation (2) to equation (4). The reducibility constraint associ-
ated to this edge is —Red(a).
5 fo@) b (3) g(e) mble="a] (4)
f(b) ~ b (5)
We add no C edge because equation (5) is an unconstrained equation. However, the set
of initial equations equation (5) depends on is recorded. Equation (5) depends on the
initial equations (2) and (3).
We add an [edge from equation (3) to equation (5). The reducibility constraint associ-
ated to this edge is T.
Equation (3) can be standard simplified by equation (4). However, there is no E-cycle
Simplification. Indeed, if we add S edges, an E-cycle is created. The S edge from (3) to
(4) (whose associated reducibility constraint is T) and the C edge from (4) to (3) (whose
associated reducibility constraint is Red(a)) describe an E-cycle.
If we delete equation (3) as in Standard Simplification, then we cannot construct a
confluent system (equation g(b) & b has no rewrite proof), therefore the inference system
would not be complete. The presence of the E-cycle prevents us from deleting equation
(3). Thus we have used the dependency graph to detect incompleteness. The reducibility-
relative-to condition of Basic Simplification also detects this. However, that condition
also prevents some simplifications that would not cause loss of completeness, which E-
cycle Simplification allows.

f(g(x));g(g) 2 f(9(2))=b (3) a=b (1)
SN P A
"Red(a){ Red(\a)\ . Red(@

"5(x)=b[x=7a] (4)

— —» Cedges
..» | edges y
_ Intermediary edges f(b)=b (5)

to see inferences

Fig. 1. Dependency graph of Basic Completion with E-cycle Simplification of E = {a = b, f(g(z)) ~
g(z), f(g(a)) = b} : the first two inferences.

4 BCPES is complete

In this section, we give the completeness result of BCPES. In the completeness proof, we
need to construct a ground dependency graph which is an instance of the dependency graph
we created in the previous section. Our proof is based on the model construction proof
of [BG94]. The ground dependency graph is used to built a model of irreducible equations
and a well-founded ordering >, of the equations.

4.1 The ground dependency graphs

In the ground dependency graph, the labels of vertices are ground equations. Edges are
added only if the reducibility constraints associated to them are satisfiable in a particular
set of ground equations.

We first define GGipir for a (non-ground) set of equations E to complete. GGipiz is the
initial ground dependency graph (Vipit, EDinit), where Vip;: is the set of vertices such that
each e € Gr(FE) labels one vertex of Vi and ED;pie = . As in the non-ground case, we set
C_ancestor(v) = {v} for every v € Vj,;¢. In a ground dependency graph, C edges are added
from ground instances of constrained equations to ground instances of unconstrained initial
equations. An [edge is added as previously from the “into” premise to the conclusion of an
inference. Furthermore, we add an I edge from the “into” premise to the “from” premise of
an inference. We also add I edges from the “into” equation to the “from” and the conclusion
equation of inferences at the ground level that simulates “inferences” at a variable position
not in the constraint at the non-ground level 7. In a ground dependency graph, we no longer
speak about E-cycle but only about cycle.

The consequences of a rule on the ground dependency graph are formalized using Ground
Graph Transitions modulo an equational theory E' distinguishing the applied rule at the
ground level. E’ is a set of ground equations with respect to which the reducibility constraints
are tested. In the completeness proof, this set is instantiated by Gr(Es). Ground Graph
Transitions modulo an equational theory are described in detail in [LS97]. We need to lift

7 At the non-ground level, no inference or simplification is performed at a variable position. How-
ever, we refer to it as an inference. At the ground level, the inference or the simplification must
be performed. This remark applies to the rest of section 4.

from ground level to non-ground level. It is why we speak about Ground Graph Transition
Derivation associated to (non-ground) Graph Transition Derivation.

4.2 Completeness proofs

In this section, we first give completeness results concerning the Ground Graph Transition
Derivation and then completeness results concerning BCPES. But first, we give some lem-
mas describing properties of ground dependency graphs. These properties follow from the
construction of ground dependency graphs.

The following theorem provides the result that a cycle in a ground dependency graphs
contains at least a C'and an S edge. The proof is done by contradiction.

Theorem 9. Let (EGy = Gr(E), GGy = GGinit) = (EG1,GGy) — -+ = (EG,, GGY) - -
be a Ground Graph Transition Derivation modulo E’'. If GG, contains a cycle, then this
cycle contains at least a C and an S edge.

The following lemma proves that if an [edge goes from a vertex v; to a vertex vy in

GG, then label(vy) is reducible in Gr(Eo).
Lemma 10. Let (EGy = Gr(E),GGy) — (EG1,GGy) = -+ = (EG,,GGy)--- be a

Ground Graph Transition Derivation modulo Gr(Es). If there is an edge from a vertexr vy
to a vertezx vy in GG, then label(vy) is reducible in Gr(Ey).

The following lemma proves that a cycle in a ground dependency graph does not contain
an [edge from an “into” equation to a “from” equation of an inference.

Lemma 11. Let (EGy = Gr(E), GGy = GGinit) = (EG1,GGL) — - = (EG,, GGY) - -
be a Ground Graph Transition Derivation modulo Gr(Ew). If GG; is a dependency graph
containing a cycle C, then C does not contain an 1 edge from an “into” equation to a “from”
equation of an inference.

The following lemma proves that if there is a cycle or an infinite path at the ground level
then there is an E-cycle at the non-ground level. For the proof of this lemma, we basically
need to show that the extra edges we added to the graph in the ground case do not create
any cycles that do not already exist at the non-ground level. In particular, lemma 11 and
theorem 9 are used.

Lemma 12. Let (Ey = E,Gy = Ginit) = (E1,G1) = -+ = (En,Gp) - be a Graph
Transition Derivation and (EGy = Gr(E),GGy = GGinit) = (EG1,GG1) — -+ =
(EGn,GGy) - - its associated Ground Graph Transition Derivation modulo Gr(Es), then
for all 1,

- if GGy contains a cycle then G; contains an E-cycle.

- if GGy contains an infinite path, then G; contains an E-cycle.

The first completeness theorem provides a completeness result for Ground Graph Transi-
tion derivations. The proof of this theorem is based on the construction of a model of Gr(E«)
which is a convergent rewrite system. For doing that the ordering >, is constructed directly
from the ground dependency graph GG, .

Definition 13. Let >, be the ordering such that e >, ¢’ if and only if there are two vertices
v and v' in GG« such that label(v) = e, label(v') = €/, and there is a path in GG« from v
to v’.

The ordering may not be total, but it is defined on the equations we use in the complete-
ness proof. GG, contains no infinite path or cycle if we do Basic Completion with E-cycle
Simplification (see lemma 12) and so >4 is well-founded.

We define redundancy in terms of this ordering.

Definition 14. A ground equation e is g-redundant in a set of ground equations E if there
are equations e1,---, e, € E such that e;,---, e, =€ and ¢; <4 e for all 4.

E-cycle simplification is an example of g-redundancy as expressed in the following lemma.

Lemma 15. Let E be a set of unconstrained equations. Let (Ey = E,Go = Gipit) —
(E1,G1) = -+ = (En, Gyp) - - - be a Graph Transition and (EGo = Gr(E), GGy = GGinit) —
(EG1,GGy) = -+ = (EGR,GGy) - - its associated Ground Graph Transition Derivation
modulo Gr(Es) where, GG does not contain a cycle and an infinite path. Let e be an
equation that is E-cycle simplified in some E;. Then every ground instance €' of e is g-
redundant in Gr(FEy).

Theorem 16. Let E be a set of unconstrained equations. Let (EGy = Gr(E),GGy =
GGinit) — (FG1,GG1) = -+ = (EG,,GG,) -+ be a Ground Graph Transition Deriva-
tion modulo Gr(Es) where, GG does not contain a cycle or an infinite path. Then this
Ground Graph Transition Derivation is complete in the sense that Gr(Es) is convergent.

The following main theorem proves the completeness of BCPES. The proof is based
on the correspondence between the procedural construction of the non-ground dependency
graph presented in section 3.2 and the abstract construction of the ground dependency graph
presented in section 4. Lemma 12 is mainly used for the proof.

Theorem 17. Basic Completion with E-cycle Simplification is complete.

5 Comparison with Basic Simplification

In this section, we compare E-cycle Simplification with Basic Simplification. We prove that if
we simplify because of a Basic Simplification then there is no E-cycle in the dependency graph
we construct and so there is an E-cycle Simplification. So Basic Simplification is a subset of
E-cycle Simplification. The proof of this theorem is based on a series of lemmas that show
what patterns of edges can be added to the graph. So we show that the reducibility-relative-
to condition never allows an edge to be added that would create an E-cycle. Furthermore,
we give an example where we can simplify with E-cycle Simplification and where Basic
Simplification does not permit us to simplify.

Lemma 18. Let (Ey = E,Gy = Ginit) = (E1,G1) = -+ = (En,Gp) -+ be a Graph
Transition Derivation such that Eg — F1 — --- — E,, 1s a deriwation of BCPBS. Then for
all i, G; contains no E-path consisting of an 1 edge followed by S edges and then by a C edge.

Lemma 19. Let (Ey = E,Gy = Ginit) = (E1,G1) = -+ = (En,Gp) -+ be a Graph
Transition Derivation such that Fy — E1 — -+ — E, is a deriwation of BCPBS. Then if
there is an i such that G; contains an E-cycle, then this E-cycle does not contain any 1 edge.

Theorem 20. Let (Ey = E,Go = Ginit) — (E1,G1) = - = (En,Gp) -+ be a Graph
Transition Deriwation such that Fy — E1 — --- — FE, is a deriwation of BCPBS. Then
there is no i such that G; contains an E-cycle.

As a direct corollary, we get that if Fg, By, .-, E}, is a derivation of BCPBS, then it is
also a derivation of BCPES. Inversely, we provide an example that shows that a derivation

of BCPES is not a derivation of BCPBS.

Ezample 21. Let E = {g(z) =~ f(z) (1),9(a) =~ b (2),h(f(a)) ~ b (3)}. We assume a
lexicographic path ordering based on the precedence h >prec ¢ >prec f >prec @ >prec b. Let
us assume the following execution plan using BCPES.

L e) g~)
f(z) ~blz="a] (4)
We add C edges from equation (4) to initial equations (1) and (2). The reducibility
constraint associated to these edges is Red(a).

We add an [edge from equation (1) to equation (4). The reducibility constraint associ-
ated to this edge is = Red(a).

, b)) ~b(E)) sbe="a] @)

h(b) =~ b (5)

The equation h(f(a)) ~ b (3) is E-cycle simplified by equation f(z) ~ b[z =" a] (4).
Indeed, no E-cycle is created when we add S edges from equation (3) to equations (4)
and (5).
With Basic Simplification, the equation h(f(a)) & b cannot be deleted because f(z) ~
b[z =" a] is not reduced relative to h(f(a)) ~ b.

6 Conclusion

We have presented a new method of Simplification in the Basic Completion of a set of
equations F, called E-cycle Simplification. Our approach is easy to understand because it is
based on a graph. Indeed, E-cycle Simplification is based on the creation of a dependency
graph during the completion process showing the dependencies between equations. It permits
us to control completeness of Completion such that, whenever E-cycle Simplification allows a
simplification, completeness is preserved. We compare our method with Basic Simplification
and prove that Basic Simplification is a strict subset of E-cycle Simplification.

Our method is shown complete using an abstract proof technique based on model con-
struction. We think that this abstract framework is promising in the sense that this method
of proof can lead us to an analysis of different simplification strategies from the point of
view of completeness in constrained completion procedures. We conjecture that all complete
Simplification methods for Basic Completion can be fit into our framework. We plan to
use this method for AC Basic Completion and in particular, for simplification in AC Basic
Completion.

We have implemented our method of Basic Completion with E-cycle Simplification. The
system is called FCC (E-cycle Completion). It is written in ELAN [KKV95], which is a
language based on rewriting and adapted for prototyping. Some implementation details are
available at http://www.loria. fr/~scharff. The implementation can perform both E-cycle
Simplification and Basic Simplification. The system is fully operational, but we have not
yet had time to perform interesting experiments. For the conference, we plan to run some
examples with the two different methods of simplification and give expermental results
comparing the methods.

References

[BGO4]

L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection
and simplification. Journal of Logic and Computation, 4(3):217-247, 1994.

[BGLS95] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation. Informa-

[DJ90]

[Her]

[KB70]

[KKR90]

[KKV95]
[LS95]
[LS97]

[NR92]

[Pet94]

tion and Computation, 121(2):172-192, 1995.

N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science, vol-
ume B, chapter 6: Rewrite Systems, pages 244-320. Elsevier Science Publishers B. V.
(North-Holland), 1990. Also as: Research report 478, LRI.

M. Hermann. Constrained reachability is np-complete. http://www.loria.fr/ her-
mann/publications.html#notes.

Donald E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263—-297. Pergamon
Press, Oxford, 1970.

Claude Kirchner, Héléne Kirchner, and M. Rusinowitch. Deduction with symbolic con-
straints. Revue d’Intelligence Artificielle, 4(3):9-52, 1990. Special issue on Automatic
Deduction.

Claude Kirchner, Hélene Kirchner, and Marian Vittek. ELAN V 1.17 User Manual. Inria
Lorraine & Crin, Nancy (France), first edition, November 1995.

Christopher Lynch and Wayne Snyder. Redundancy criteria for constrained completion.
In Theoretical Computer Science, volume 142, pages 141-177, 1995.

Christopher Lynch and Christelle Scharff. Basic completion with e-cycle simplification,
1997. http://www loria.fr/~scharff.

R. Nieuwenhuis and A. Rubio. Basic superposition is complete. In B. Krieg-Brickner,
editor, Proceedings of ESOP’92, volume 582 of Lecture Notes in Computer Science, pages
371-389. Springer-Verlag, 1992.

G.E. Peterson. Constrained term-rewriting induction with applications. Methods of Logic
in Computer Science, 1(4):379-412, 1994.

