Functional programming

Functional programming

Function evaluation (not assignment of variables)
is the basic concept for a programming paradigm
that has been implemented in such functional pro-
gramming languages as ML.

The language ML (“Meta Language”) was origi-
nally introduced in the 1970’'s as part of a theo-
rem proving system, and was intended for describ-
ing and implementing proof strategies. Standard
ML of New Jersey (SML) is an implementation of
ML.

The basic mode of computation in ML, as in other
functional languages, is the use of the definition
and application of functions (explicit and recur-
sive).

The basic cycle of ML activity has three parts:

— read input from the user,

— evaluate it, and

— print the computed value (or an error message).

Why functional programming matters?

e The key to understanding the importance of func-
tional programming is to focus on what it adds,
rather than what it takes away.

e Software becomes more and more complex. It is
important to structure it well.

Structured software is:
— easy to write
— easy to debug
— easy to reuse
e Modular software is generally accepted to be the
key to successful software.
— Divide-and-conquer

— The ways in which the original problem can be
divided up depends directly on the ways in which
solutions can be “glued” together.

— New “glues’” are provided in functional program-
ming (Examples: higher-order functions, lazy
evaluation, polymorphism, abstract data type).

Applications

Software Prototyping.

Industrial:
— AnnoDomini - Year 2000 remediation for Cobol

— Shop.com Merchant System - an e-commerce
database

— Combinators for financial derivatives
Theorem provers.
Natural language processing and speech recognition

Network toolkits and applications.

General features

The functional ascetics forbid themselves facilities
which less pious programmers regard as standard.

No re-assignment.

No side-effects.

— When a value is assigned it does not change dur-
ing the execution of the program = Property
of referential transparency.

— No global variable or instance of an object.
No explicit flow of control.
Higher level than third generation languages.

Construction of more reliable software = Correct-
ness.

Proof of the correctness easiest than for imperative
programs.

Plan

Recursion (sub-chapter)
Expressions, values and simple types
Functions (explicit, recursive)
Types: tuples, lists

Operations on lists

Pattern matching

Higher-order functions
Mutual-recursion

Currying

Scope (let, local)

Records, arrays, user defined types

Exceptions

Sub-chapter: Recursion

Defining Functions

e Functions with a finite domain can be described
by specifying for each element in the domain the
associated element in the codomain.

e Examples:

1 ifz=1
f(w)_{ 0 ifz=0orz=3

— Letzareal. f(x) =1if0<x<3

e The two basic mechanisms for defining functions
on infinite domains are
— explicit definitions and

— recursive definitions.

Explicit definitions

e An explicit definition of a function f consists of
giving an expression that indicates for each domain
element x how f(z) is obtained from previously de-
fined functions (including constants) by composi-
tion.

e Examples

zero(x) = O

add3(z) = =+ 3

gt(z,y) = ifz>ythen 1 else 0
xa(z) = ifzxeAthenlelseO

Note

— The last function is called the characteristic func-
tion of the set A.

— If-then-else may be used for case distinctions in
function definitions.

Recursive Definitions

e A recursive definition of a function consists of
giving an expression for every domain element x
that indicates how f(z) is obtained from previously
defined functions and values of f for “smaller” ar-
guments (by composition).

— Self-references

e [he recursion principle specifies under which con-
ditions such definitions with self-references are well-
formed.

e Example

The number of permutations of n elements is n! (or
fact(n), read n factorial).

— Order
This function can be defined recursively by:

fact(n) = ifn=0 then 1 else n * fact(n — 1).

The values fact(n), for all n > 0, depend on values
fact(k), where k is smaller than n. Here k =n — 1.
This case is called the general case.

n = 0 is called the exit condition or the basis
condition.

Well-Formed Recursive Definitions

e A well-formed recursive definition of a function
f consists of two parts:

— the basis case defines the function f for the
“smallest” arguments in terms of previously de-
fined functions (including constants), (no f).

— the general case defines values f(xz) in terms
of previously defined functions and values f(y)
for “smaller” arguments y.

e In the case of definitions of functions over the nat-
ural numbers, smaller is interpreted in the usual
sense.

Later on we will see recursive definitions of func-
tions on other domains, such as lists, where “smaller”
necessarily has to be interpreted differently. We use
an ordering on the elements we consider.

Computing Values of Recursively Defined Functions

e The evaluation of a recursively defined function
for a specific argument involves two kinds of oper-
ations:

— substitutions use the function definition to “ex-
pand” an application, whereas

— simplifications use knowledge about previously
defined (or primitive) functions to “reduce” an
expression.

e [he evaluation process will terminate if the defi-
nition is well-formed.

e Example:

fact(5) = 5 fact(b—1) (substitution)
= 5% fact(4) (simplification)
= 5% (4% fact(4—1)) (substitution)
= 20 % fact(3) (simplification)

120

Example: Squares

e T here are different ways to define a function.
e For instance, the function that squares its argument
can be defined explicitly in terms of multiplication,
square(xr) = x * x,
or by recursion:

square(x) = ifz=0 then O
else square(r —1) +2z —1

From the recursive definition we get the following
function values:

square(0) = O

square(l) = square(0)+1 = 1

square(2) = square(l)4+3 = 4

square(3) = square(2)+5 = 9
= square(3)+7 = 16

square(4)

The two definitions above define the same function,
as

zxr=(x—1)*x(x—1) 4+ 2z — 1.

Addition and gcd

e Addition

I ifb=0
add(a,b) = { add(a,b—1) +1 otherwise
e Greatest Common Divisor

[a ifb=20
gced(a,b) = { ged(b,a mod b) otherwise

Fibonacci Numbers

e T he recursive definition of the following well-known
function (Fibonacci function) employs the function
values for several smaller arguments:

1 ifn=20
fib(n) = 1 ifn=1
fib(n —1) 4+ fib(n—2) ifn>1

e The corresponding function values are called Fi-
bonacci numbers:

£ib(0) = 1
fib(1) = 1
fib(2) = fib(1) + fib(0) = 2
fib(3) = fib(2) + fib(1) = 3
fib(4) = fib(3) + fib(2) = 5
fib(5) = fib(4) + fib(3) = 8...

e The Fibonacci numbers were originally defined to
count the number of rabbits after n generations,
but they pop up in an amazing variety of places:

— The Golden Ratio of architecture, ¢ = fib(n)/fib(n—
1)=(1+4++v5)/2~1.618

— The angles between leaves in spiral pine cones
grow as ratios of Fibonacci numbers.

— They arise in the analysis of computer algo-
rithmes.

Well-defined Functions

e A Key requirement of a recursive definition is that
it be formulated in terms of function values for
smaller arguments.

e A recursive function is said well-defined, if it is
possible to compute f(n) for all n for which the
function is defined. Otherwise it is said partially
defined.

e Consider this definition,
F(x) =ifz=0thenOelse F(z+1)+1

and corresponding attempts at computing function
values,

F(O) = 0

F(1) = F(2)+1
= F(3)+2
= F(4)+3

This function is defined for one argument only. So
F is not well-defined.

e What about the function G, defined for positive
integers by

0 ifn=1
G(n) =< 14+ G(n/2) ifnis even
G(3n—1) ifnisoddandn>1

Study of G

e (G is not well-defined for all arguments.
We have

G(1) = 0

G2 = 1+G1)=1

G(3) = GB)=14+GA4)=1+(14+G(22)=3
G(4) = 1+G(2)=2

G(5) = G(14) =1+ G(7) =1+ G(20)

1+ (1+G(10)) =3+ G(5)

Thus, if G(5) was defined, we could infer the con-
tradictory statement that O = 3! In other words,
G(5) must be undefined.

A new function H

e It has been conjectured (and shown up to one tril-
lion) that a slight modification,

H(3n+1) ifnisoddandn>1

defines a well-defined function on all positive inte-
gers.

— H(2): H(1)

— H(10): H(5)—H(16)—H(8)—H(4)—H(2)—H(1)

— H(17): H(52)—H(26)-H(13)—H(40)—H(20)—H(10)—
H(5)—H(16)—H(8)—H(4)—H(2)—H(1)

— H(21): H(64)-H(32)—H(16)—H(8)—H(4)—H(2)-
H(1)

— H(35): H(106)—H(53)—H(160)—H(80)—H(40)—H(20)-
H(10)—H(5)—H(16)—H(8)—H(4)—H(2)-H(1)

0 ifn=1
H(n)=<¢ 14+ H(n/2) if nis even

H counts the number of downward steps this path
takes.

H(2) =1
H(17) =9
H(21) =6

and H(35) = 10.

More General Recursive Definitions

Example:

] n—10 if n > 100
M(n) _{ M(M(n+11)) if n < 100

This function is known as “McCarthy’s 91 func-
tion.”

Its definition uses nested recursive function appli-
cations.

Consider one instance,

M(99) = M(M(110)) (since 99 < 100)
= M(100) (since 110 > 100)
= M(M(111)) (since 100 < 100)
= M(101) (since 111 > 100)
= 91 (since 101 > 100)

Is this function defined for all arguments n < 1007

The function is in fact defined for all positive in-
tegers and remarkably takes the value 91 for all
arguments less than or equal to 101.

e M can also be defined explicitly by:

| n—10 ifn> 100
M(”)—{ 91 if n < 100

e Proving that the 2 definitions are equivalent re-
quires mathematical induction arguments.

Different evaluations of a recursive function

0 if =20
fl,y) = { f(x—1, f(x,y)) otherwise

e Consider f(1,1).
Innermost evaluation

f(1,1) = f(0,£(1,1)) = f(0, f(0,(1,1))) = ...

Outermost evaluation

f(1,1) =1£(0,f(1,1)) =0
Simultaneous
f(1,1) =£(0,f(1,1)) =0

e Innermost evaluation does not always terminate.
e Outermost evaluation does always terminate.

e Innermost evaluation is more efficient than outer-
most evaluation (Convergence)

Recursion — Summary

Recursion is a general method for the definition of
functions (and also a powerful technique for design-
ing algorithms).

Recursive definitions generally specify only partial
functions (Intuitively functions not defined every-
where).

The evaluation of recursively defined function for
specific arguments is based on calculation by sub-
stitution and simplification.

These two concepts,

— definition by recursion and

— evaluation by substitution and simplification,

are the foundation of functional programming lan-
guages such as ML.

SML

First SML example

Not the “Hello World!" program!

Here is a simple example:

_3;
val it = 3 : int

The first line contains the SML prompt, followed
by an expression typed in by the user and ended by
a semicolon.

The second line is SML’s response, indicating the
value of the input expression and its type.

Interacting with SML

e SML has a number of built-in operators and data
types.

e SML provides the standard arithmetic operators.

- 3+2;
val it = 6 : int
- sqrt(2.0);

val it = 1.41421356237309 : real

e The Boolean values true and false are available, as
are logical operators such as not (negation), andalso
(conjunction), and orelse (disjunction).

- not(true);

val it = false : Dbool
- true andalso false;
val it = false : bool

Types in SML

e SML is a strongly typed language in that all (well-
formed) expressions have a type that can be deter-
mined by examining the expression.

e AsS part of the evaluation process, SML determines
the type of the output value.

— Inference of type

e Simple types are:

real

Examples: ~ 1.2 and 1.5e12 (1.5 x 10'?) are
reals.

int

Examples: ~ 12 and 14 are integers. 3+ 5 is
an integer.

bool
Examples: true and not(true) are booleans.
string

Examples: "nine”, """ are strings.

Binding Names to Values

In SML one can associate identifiers with values,

- val three = 3;
val three = 3 : int

and thereby establish a new value binding,
- three;
val it = 3 : 1int
More complex expressions can also be used to bind
values to names,
- val five = 3+2;
val five = 5 : int
Names can then be used in other expressions,

- three + five;
val it = 8 : int

Defining Functions in SML is a lot of fun!

e The general form of a function definition in SML
is:

fun (identifier) ({parameters)) = (expression);

e T he type of a function is expressed using —.
It is recursively defined by:

type of the parameters — type of the result

e Example:

- fun double(x) = 2*x;
val double = fn : int -> int

declares double as a function from integers to inte-
gers.

The type of the function double is: int — int.

- double(222);
val it = 444 : int

The type of double(222) is int.

If we apply double to an argument of the wrong
type, we get an error message:

- double(2.0);

Error: operator and operand don’t agree [tycon
mismatch]

operator domain: int

operand: real

in expression:

double 2.0

e T he user may also explicitly specify types.

e Example:

- fun max(x:int,y:int,z:int) =

= if ((x>y) andalso (x>z)) then x
= else (if (y>z) then y else z);
val max = fn : 1int * int * int -> int
- max(3,2,2);

val it = 3 : 1int

The type of the function max is:

int * int * int — int.

Recursive Definitions

e T he use of recursive definitions is a main charac-
teristic of functional programming languages.

e T hese languages strongly encourage the use of re-
cursion as a structuring mechanism in preference to
iterative constructs such as while-loops.

e Example:

- fun factorial(x) = if x=0 then 1
= else x*factorial(x-1);
val factorial = fn : int -> int

The type of the function factorial is:
int — int

The definition is used by SML to evaluate applica-
tions of the function to specific arguments.

- factorial(5b);

val it = 120 : int

- factorial(10);

val it = 3628800 : int

Greatest Common Divisor

e T he calculation of the greatest common divisor
(gcd) of two positive integers can also be done
recursively based on the following observations:

1. ged(n,n) = n,
2. gcd(m,n) = ged(n,m), and
3. ged(m,n) = ged(m — n,n), if m > n.

e A possible definition in SML is as follows:

- fun gcd(m,n):int = if m=n then n
= else if m>n then gcd(m-n,n)
= else gcd(m,n-m) ;

val gcd = fn : int * int -> int
- gcd(12,30);

val it = 6 : 1int

- gcd(1,20);

val it =1 : int

- gcd(126,2357) ;

val it = 1 : int

- gcd(125,56345);
val it = 5 : int

Tuples in SML

e SML provides two ways of defining data types that
represent sequences.

— Tuples are finite sequences, where the length is
arbitrary but fixed and the different components
need not be of the same type.

— Lists are finite sequences of elements of the
same type.

e Some examples of tuples and the corresponding
types are:

- val t1 (1,2,3);

val t1 1,2,3) : int * int * int

- val t2 = (4,(5.0,6));

val t2 = (4,(5.0,6)) : int * (real * int)

- val t3 = (7,8.0,"nine");

val t3 = (7,8.0,"nine") : int * real * string

]
I~ 1l

The type of t1 is int * int * int. The type of t2

iS int * (real * int). The type of t3 is int * real
* string.

e The components of a tuple can be accessed by ap-
plying the built-in function #i, where ¢ is a positive
number.

- #1(t1);

val it =1 : int

- #1(t2);

val it = 4 : int

- #2(t2);

val it = (5.0,6) : real * int
- #2(#2(t2));

val it = 6 : int

- #3(t3);

val it = "nine" : string

If a function #i is applied to a tuple with fewer than
1 components, an error results:

- #4(t3);
Error: operator and operand don’t agree

Lists in SML

e Another built-in data structure to represent se-
quences in SML are lists.

e A list in SML is essentially a finite sequence of
objects, all of the same type.

e Examples:

- [1,2,3];

val it = [1,2,3] : int list

- [true,false, true];

val it = [true,false,true] : Dbool list

- [[1,2,3],[4,5],[6]1];

val it = [[1,2,3],[4,5],[6]] : int list list

The last example is a list of lists of integers, in SML
notation int list list.

e All objects in a list must be of the same type:

Error: operator and operand don’t agree

e The empty list is denoted by the following symbols:

- [1;
val it = [1 : ‘’a list - nil; val it = []
’a list

e Note that the type is described in terms of a type
variable ’a, as a list of objects of type ’a. Instanti-
ating the type variable, by types such as int, results
in (different) empty lists of corresponding types.

Operations on Lists

e SML provides some predefined functions for manip-
ulating lists.

e T he function hd returns the first element of its ar-
gument list.

- hd[1,2,3];

val it =1 : int

- hd[[1,2],[31];

val it = [1,2] : int list

Applying this function to the empty list will result
in an exception (error).

e [he function t1 removes the first element of its
argument lists, and returns the remaining list.

- t1[1,2,3];

val it = [2,3] : int list

- t1[[1,2]1,[3]]1;

val it = [[3]] : int 1list 1list

The application of this function to the empty list
will also result in an error.

e The types of the two functions are as follows:

- hd;

val it = fn : ’a list -> ’a

- tl;

val it = fn : ’a list -> ’a list

More List Operations

e Lists can be constructed by the (binary) function
:: (read cons) that adds its first argument to the
front of the second argument.

- 5::[1;

val it = [6] : int list
-1::[2,3];

val it = [1,2,3] : int list

- [192] . [[3] ’ [495’697]];
val it = [[1,2],[3]1,[4,5,6,7]] : int list list

Again, the arguments must be of the right type:

- [1]::[2,3];
Error: operator and operand don’t agree

e Lists can also be compared for equality:

- [1,2,3]1=[1,2,3];

val it = true : Dbool

- [1,2]=[2,1];

val it = false : Dbool
- t1[1] = [1;

val it = true : Dbool

Defining List Functions

Recursion is particularly useful for defining list pro-
cessing functions.

For example, consider the problem of defining an
SML function, call it concat, that takes as argu-
ments two lists of the same type and returns the
concatenated list.

What is the SML type of concat?

For example, the following applications of the func-
tion concat should yield the indicated responses.

- concat([1,2],[3]);

val it = [1,2,3] : int list
- concat([],[1,2]);
val it = [1,2] : int list

- concat([1,2],[]);
val it = [1,2] : int list

e In defining such list processing functions, it is help-
ful to keep in mind that a list is either

— the empty list [] or
— of the form x::y.

The empty list and :: are the constructors of the
type list.

For example,

- [1,2,3]=1::[2,3];
val it = true : Dbool

Concatenation of Lists

e In designing a function for concatenating two lists
x and y we thus distinguish two cases, depending
on the form of x:

— If x is an empty list, then concatenating x with
y yields just y.

— If x is of the form x1::x2, then concatenating x
with y is a list of the form x1::z, where z is the
results of concatenating x2 with y. In fact we
can even be more specific by observing that x
= hd(x)::tl(x).

e T his suggests the following recursive definition.

- fun concat(x,y) = if x=[] then y

= else hd(x)::concat(tl(x),y);

val concat = fn : ’’a list * ’’a list -> ’’a
list

e This seems to work (at least on some examples):

- concat([1,2],[3,4,5]);

val it = [1,2,3,4,5] : int list
- concat([],[1,2]);

val it = [1,2] : int list

- concat([1,2],[]);

val it = [1,2] : int list

The result of: concat([1,[]); is:

Warning: type vars not generalized because
of

value restriction are instantiated to dummy
types (X1,X2,...)

val it =[] : 7.X1 list

More List Processing Functions

e Recursion often vields simple and natural defini-
tions of functions on lists.

e The following function computes the length of its
argument /ist by distinguishing between:

— the empty list (the basis case) and
— non-empty lists (the general case).

- fun length(L) =
= if (L=nil) then O
= else 1+length(t1(L));

val length = fn : ’’a list -> int

- length[1,2,3];

val it = 3 : int

- length[[5],[4],[3],[2,1]];
val it = 4 : int

- length[];

val it = 0 : int

e T he following function has a similar recursive struc-
ture. It doubles all the elements in its argument list
(of integers).

- fun doubleall(L) =
= if L=[] then []
= else (2%hd(L))::doubleall(t1(L));

val doubleall = fn : int list -> int list

- doubleall[1,3,5,7];
val it = [2,6,10,14] : int list

doubleall is of type: wnt list — wnt list. Why?

T he Reverse of a List

e Concatenation of lists, for which we gave a re-
cursive definition, is actually a built-in operator in
SML, denoted by the symbol @.

e \We use this operator in the following recursive def-
inition of a function that produces the reverse of a
list.

- fun reverse(L) =
= if L = nil then nil
else reverse(tl(L)) @ [hd(L)];

val reverse = fn : ’’a list -> ’’a list

- reverse [1,2,3];

val it = [3,2,1] : int list

- reverse nil;

stdIn:35.1-35.12 Warning: type vars not generalized
because of value restriction are instantiated

to dummy types (X1,X2,...)

val it = [] : 7.X1 list

Pattern Matching

e We informally use pattern matching all the time in
real life.

e Informally, a pattern is an expression containing
variables, for which other expressions may be sub-
stituted. The problem of matching a pattern against
a given expression consists of finding a suitable sub-
stitution that makes the pattern identical to the
desired expression, if one exists at all.

e For example, we may apply the commutativity of

-+,
T+y=ytz
to the formula
F=1+42+3
to obtain an equivalent formula
34241

Here the “meta-variables” x and y were replaced by
numbers. How?

Function Definition by Patterns

e In SML there is an alternative form of defining func-
tions via patterns.

e The general form of such definitions is:

fun <identifier>(<patternl>) = <expressionl>
| <identifier>(<pattern2>) = <expression2>
|
| <identifier>(<patternK>) = <expressionK>;

where the identifiers, which name the function, are
all the same, all patterns are of the same type, and
all expressions are of the same type.

e For example, an alternative definition of the reverse
function is:

- fun reverse(nil) = nil
= | reverse(x::xs) = reverse(xs) @ [x];

val reverse = fn : a list -> ’a 1list

e In applying such a function to specific arguments,
the patterns are inspected in order and the first
match determines the value of the function.

Removing Elements from Lists

e The following function removes all occurrences of
its first argument from its second argument list.

- fun remove(x,L) =

= if (L=[]) then []

= else (if (x=hd(L))

= then remove(x,t1(L))

= else hd(L)::remove(x,t1(L)));

val remove = fn : Y239 % Y73 list -> ’’a 1list

- remove(1l,[5,3,1]);

val it = [5,3] : int list

- remove(2,[4,2,4,2,4,2,2]);

val it = [4,4,4] : int list

- remove(2,nil); val it = [] : int list

e We use it as an auxiliary function in the defini-
tion of another function that removes all duplicate
occurrences of elements from its argument list.

- fun removedupl(L) =
= if (L=[]) then []
= else hd(L): :remove(hd(L) ,removedupl (t1(L)));

val removedupl = fn : ’’a list -> ’’a list

Constructing Sublists

A sublist of a list L is any list obtained by deleting
some (i.e., zero or more) elements from L.

For example, [1, [11, [2], and [1,2] are all the
sublists of [1,2].

Let us design an SML function that constructs all
sublists of a given list L. The definition will be
recursive, based on a case distinction as to whether
L is the empty list or not.

If L is non-empty, it has a first element . There
are two kinds of sublists: those containing =, and
those not containing =x.

For instance, in the above example we have sublists
[1] and [1,2] on the one hand, and [] and [2] on
the other hand.

Note that there is a one-to-one correspondence be-
tween the two kinds of sublists, and that each sub-
list of the latter kind is also a sublist of t1(L).

Constructing Sublists (continued)

e T hese observations lead to the following definition.

- fun sublists(L) =

= if (L=[]) then [nil]

= else sublists(tl(L))

= @ insertL(hd(L),sublists(t1(L)));

val sublists = fn : ’’a list -> ’’a list list

- sublists[];

stdIn:84.1-84.11 Warning: type vars not generalized

because of value restriction are instantiated

to dummy types (X1,X2,...)

val it = [[]] : 7?.X1 list list - sublists[1,2];

val it = [[J,[2],[1],[1,2]] : int list list

- sublists[1,2,3];

val it = [[]1,[3]1,[2],[2,3],[1]1,[1,3],[1,2]1,[1,2,3]]
int list list

- sublists[4,3,2,1];

val it = [[],[1],[2]1,[2,1],[3],[3,1]1,[3,2],

[3,2,11,[04]1,[4,1],...

e Here @ denotes the (built-in) concatenation oper-
ation on lists, and the function insertL inserts its
first argument at the front of all elements in its sec-
ond argument (which must be a list). Its definition
is left as an exercise.

e If we change the expression in the else-branch to

= else insertL(hd(L),sublists(t1(L)))
= @ sublists(tl1l(L))

all sublists will still be generated, but in a different
order.

Higher-Order Functions

e In functional programming languages, parameters
may denote functions and be used in definitions of
other, so-called higher-order, functions.

e One example of a higher-order function is the func-
tion apply defined below, which applies its first ar-
gument (a function) to all elements in its second
argument (a list of suitable type).

- fun apply(f,L) =

= if (L=[1) then []

= else f(hd(L)):: (apply(£f,t1(L)));

val apply = fn : (’’a -> ’b) * ’’a list ->
’b list

We may apply apply with any function as argument.

- fun square(x) = (x:int)*x;
val square = fn : 1int -> int
- apply(square, [2,3,4]);

val it = [4,9,16] : int list

e T he function doubleall we defined may be consid-
ered a special case of supplying apply with first ar-
gument double (a function we defined in a previous
lecture).

- apply(double,[1,3,5,7]);
val it = [2,6,10,14] : int list

e apply is predefined in SML and is called map.

Mutual Recursion

e Sometimes the most convenient way of defining
(two or more different) functions is in mutual de-
pendence of each other.

e Consider the functions, even and odd that test if a
number is even and odd. We can define them in
the following way.

- fun even(0) = true
= | even(m) = odd(n-1)

= and

= 0dd(0) = false

= | odd(n) = even(n-1);

val even = fn : int -> bool

val odd = fn : 1int -> bool

SML uses the keyword and (not to be confused with
the logical operator andalso) for such mutually re-
cursive definitions.

Neither of the two definition is acceptable by itself.

- even(2);
val it = true : Dbool
- 0dd(3);
val it = true : bool

e Consider two functions, take and skip, both of which
extract alternate elements from a given list, with
the difference that take starts with the first element
(and hence extracts all elements at odd-numbered
positions), whereas skip skips the first element (and
hence extracts all elements at even-numbered po-
sitions, if any).

- fun take(L) =
= if L = nil then nil
= else hd(L)::skip(t1(L))
= and
skip(L) =
= if L=nil then nil
= else take(tl(L));
val take = fn : ’’a list -> ’’a list
val skip = fn : ’’a list -> ’’a list

- take[1,2,3];

val it = [1,3] : int list
- skip[1,2,3];

val it = [2] : int list

Sorting

We next design a function for sorting a list of
integers.

More precisely, we want to define an SML function,
sort : int list -> int list

such that sort (L) is a sorted version (in hon-descending
order) of L.

Sorting is an important problem for which a large
variety of different algorithms have been proposed.

The method we will explore is based on the follow-
ing idea. To sort a list L,

— first split L into two disjoint sublists (of about
equal size),

— then (recursively) sort the sublists, and
— finally merge the (now sorted) sublists.

This recursive method is known as Merge-Sort.

It evidently requires us to define suitable functions
for

— splitting a list into two sublists and

— merging two sorted lists into one sorted list.

Merging

e First we consider the problem of merging two sorted
lists.

e A corresponding recursive definition can be eas-
ily defined by distinguishing between the different
cases, as to whether one of the argument lists is
empty or not.

e The following SML definition is formulated in terms
of patterns (against which specific arguments in
applications of the function will be matched during
evaluation).

- fun merge([],M) = M
| merge(L,[]) =L
| merge(x::xl,y::yl) =
if (x:int)<y then x::merge(xl,y::yl)
else y::merge(x::x1,yl);
val merge = fn : 1int list * int list -> int
list
- merge([1,5,7,9],[2,3,5,5,10]);
val it = [1,2,3,5,5,5,7,9,10] : int list
- merge([],[1,2]);

val it = [1,2] : int list
- merge([1,2],[1);
val it = [1,2] : int list

e How do we split a list? Recursion seems to be of
little help for this task, but fortunately we have al-
ready defined suitable functions that solve the prob-
lem.

Merge Sort

e Using take and skip to split a list, we obtain the
following function for sorting.

- fun sort(L) =

= if L=[] then []

= else merge(sort(take(L)) ,sort(skip(L)));
val sort = fn : int list -> int list

Don’t run this function, though, as it doesn’t quite
work. Why?

e T0 see where the problem is, observe what the re-
sult is of applying take to a one-element list.

- takel[1];
val it = [1] : int list

Thus in this case, the first recursive call to sort will
be applied to the same argument!

e Here is a modified version in which one-element lists
are dealt with correctly.

- fun sort(L) =

= if L=[] then []

= else if t1l(L)=[] then L

= else merge(sort(take(L)) ,sort(skip(L)));
val sort = fn : int list -> int list

Finally, some examples:

- sortl[];

val it = [] : int list

- sort[1];

val it = [1] : int list

- sort[1,2];

val it = [1,2] : int list
- sort[2,1];

val it = [1,2] : int list

- sort[1,2,3,4,5,6,7,8,9];

val it = [1,2,3,4,5,6,7,8,9] : int list

- sort[9,8,7,6,5,4,3,2,1];

val it = [1,2,3,4,5,6,7,8,9] : int list

- sort[1,2,1,2,2,1,2,1,2,1];

val it = [1,1,1,1,1,2,2,2,2,2] : int list

Tracing Mergesort

e It is important to be able to trace the execution of

the mergesort program to convince yourself that it
works correctly.

52 4 61 3 2 6

SN

4 1 2 SPLIT 2 6 3

4 2 2 3

m\@/@
m\m/m

H/m\H/H\m

VARV VAR
e et

12 2 3 4 56 6

e In the course of executing the recursive algorithm,
the computer has to keep track of what work still

needs to be done as it is interrupted with additional
recursive calls.

Tracing Mergesort

How to split?

52 4 61 3 2 6

SN

SN N
A
VAVAAVAY;
AR

~

1 2 23 4 56 6

T he Tower of Hanoi

e [he tower of Hanoi consists of a fixed number of
disks stacked on a pole in decreasing size, that is,
with the smallest disk at the top.

"

e There are two other poles and the task is to trans-
fer all disks from the first to the third pole, one at
a time without ever placing a larger disk on top of
a smaller one.

e There is an elegant solution to this problem by re-
cursion.

Tower Moves

First consider how many moves are needed, at the
least, to transfer a tower of k disks.

Observe that we need to get to the following in-
termediate configuration, so as to be able to move
the largest disk.

1 2 3

That is, we have to transfer the £k — 1 smaller disks
to the middle pole, we can then move the largest
disks from the first to the third pole, and finally the
k—1 smaller disks from the second pole to the third
pole.

Let M(k) be the minimum number of moves re-
quired to transfer k disks from one pole to another
pole. This function M satisfies the recursive iden-
tity:
Mk)y=ME-1)+14+ME-1)=2M(k-1)+1,
for all kK > O.

In addition, we set M (0) = 0, so that by the above
identity M (1) = 1, which is correct as one move

suffices to transfer a tower containing only a single
disk.

Minimum Number of Moves

e M(O) =0
M(k) = M(k-1) + 1 + M(k-1) = 2M(k-1) + 1 for
all £ > 0.

e Let us evaluate the function for some arguments:

M) = 0

M(1) = 2M(0)+1=1
M2 = 2M(1)+1=3
M@B) = 2M2)+1=7
M) = 2M(3)+1=15
M(B) = 2M(4)+1=31
M(6) = 2M(5)+1=63

e The values grow fairly fast. In fact one can show
that the function M can be explicitly defined by

M(k) =2F -1,

for all k > 0. That is, function values grow expo-
nentially with the argument.

e This tells us that a lot of moves are needed to
transfer a tall tower, though we don’t know the
actual sequence of moves yet. For that purpose we
will write an SML function.

Tower of Hanoi in SML

e Poles are represented by the numbers 1, 2, and 3.

e We represent a move as a pair of integers (z,vy).
That is, (z,y) is interpreted as moving a disk from
pole x to pole y.

The pair (x,y) is an example of a tuple of length 2
and type int * int.

e The function ttower takes three integer arguments
k,z,andysuchthatk>0,1<x<3and1<y<3.
It returns a list of moves that transfer a tower of
k discs from pole z to pole y.

The result returned by ttower is of type (int * int)
list.

e T he function comp, if provided with two of the num-
bers 1, 2, or 3 as arguments (2 poles), returns the
third (pole).

- fun comp(x,y) = 6-(x+y);

val comp = fn : 1int * int -> int
- comp(3,1);

val it = 2 : 1int

e The function ttower is defined by:

- fun ttower(k,x,y) =
= if (k=0 orelse x=y) then []
= else if k=1 then [(x,y)]
else ttower(k-1,x,comp(x,y))
= Q@ ((x,y)::ttower(k-1,comp(x,y),y));
val ttower = fn : int * int * int
-> (int * int) 1list

— The second line indicates that no move is needed
if k=0 or the tower is to remain at the same pole.

— The third line provides an explicit solution for
moving a tower of one disk.

— The fourth and fifth line show that in the general
case we can

(a) move k — 1 disks from z to the “auxiliary” pole
z,
(b) move the largest disk from z to y, and
(c) move k — 1 disks from z to y.

e Here are some simple sequences of moves,

- ttower(1,1,3);
val it = [(1,3)] : (int * int) 1list

- ttower(2,2,2);
val it = [: (int * int) list

and a few longer ones,

- ttower(2,1,3);
val it = [(1,2),(1,3),(2,3)] : (int * int)
list

- ttower(3,1,3);
val it = [(1,3),(1,2),(3,2),(1,3),(2,1),(2,3),(1,3)]
(int * int) 1list

- ttower(4,1,3);
val it = [(1,2),(1,3),(2,3),(1,2),(3,1),
(3,2),(1,2),0(1,3),(0(2,3),(2,1),
(3,1),(2,3),(1,2),(01,3),(2,3)]
(int * int) list

