Alan M.
Davis
University of
Colorado at
Colorado Springs

Computer

COVER FEATURE

The Art of

Requirements

Triage

Triage is the process of determining which requirements a product should
satisfy given the time and resources available. The author presents three
product development case studies and 14 recommendations for practicing

this neglected art.

n meeting rooms of development organizations
worldwide, a familiar scene plays out: Mar-
keting personnel say, “The new release must
provide feature X in eight months or we might
as well not even build it.” System developers
respond, “If we build feature X into the next release,
we’ll need 12 months to deliver it.” This exchange
has two possible outcomes: One, developers bend
under the pressure and agree to an impossible
schedule. The product is delivered late, and the
company fails to meet its forecasts. Two, market-
ing personnel bend under the pressure and agree to
a less-than-satisfactory product. The product is
delivered on time but to an uninterested market,
and the company again fails to meet its forecasts.
More and more companies are feeling this require-
ments-versus-resources tension. Driven by an
increasingly competitive market, they attempt to add
features and compress schedules for the delivery of
every product. The result is often a complete mis-
match of requirements and resources, resulting in
products that fail to satisfy customer needs.
Medical personnel must deal with similar consid-
erations when treating victims of a disaster—a prac-
tice dubbed triage. They systematically categorize
victims into three groups: those who will die whether
treated or not, those who will resume normal lives
whether treated or not, and those for whom medical
treatment may make a significant difference. Each
group requires a different strategy. The first group
reccives palliative care, the second group waits for
treatment, and the third requires some ranking in
light of available resources. As new victims appear,
personnel must repeat the categorization.

Published by the |EEE Computer Society

Determining what requirements a product will
satisfy follows a similar triage process. In the first
group are requirements that the next baseline
clearly must satisfy. In the second are requirements
that the next baseline clearly need not satisfy. In the
third group are requirements that the product could
incorporate, but that the development team must
first carefully weigh against available resources.
Again, each group requires a different strategy: Put
the candidate features in the product, put them in
a bin for consideration in the next release, or group
them by priority on the basis of available resources.
As new requirements appear, new priorities are
established, and the team revisits the categories.

Triage—the process of determining which re-
quirements a product should satisfy given the time
and resources available—comprises three main
activities:

o Establish relative priorities for requirements.
This may include establishing priority-related
interdependencies as well.

e Estimate the resources needed to satisfy each
requirement. This may include establishing
resource-related interdependencies as well.

o Select a subset of requirements that optimizes
the probability of the product’s success in its
intended market, whether commercial or inter-
nal, relative to the resource constraints.

The practice of triage increases the likelihood that
products will meet customers’ needs, and thus con-
tributes significantly to the economic impact of that
product on the company’s bottom line. Yet despite

0018-9162/03/$17.00 © 2003 1EEE

the potential benefits of requirements triage, not
much has been written about it, and the descrip-
tion: -~ do appear are brief."* Doubtless, this is
because triage is a difficult art, fraught with polit-
ical and financial dangers—politically dangerous
because both technical and marketing personnel
claim the tasks as part of their responsibility; finan-
cially dangerous because a mistake could trigger a
major loss of revenue.

I have studied the requirements practices of
approximately 100 companies and organizations
over 25 years and found that few incorporate triage
in their requirements practices. In this article, I pre-
sent three case studies* extracted from those expe-
riences and offer recommendations that will aid
practitioners in aligning requirements and avail-
able resources.

CASE STUDY 1: MARK VERSUS DEV

In winter 2000, a product manager at a large
manufacturer of mass storage devices contacted me
to serve as a consultant to resolve a problem. Mark,
the marketing manager, was demanding delivery of
version 3.0 of product Y to customers in nine
months. Meanwhile, Dev, the product development
manager, was insisting that delivery in nine months
was impossible. Mark and Dev had reached an
impasse. My first task was to ask each of them to
describe his position.

Mark said, “Look, the window of opportunity
starts in nine months. We know that the competi-
tion is planning to release similar products 10 to
12 months from now. Since their products and our
3.0 release are so similar, the only way we can be
successful is to be the first to market.”

Dev responded, “I understand what you are say-
ing. But just wishing for something is not going to
make it happen. My team cannot produce all the
features you want in release 3.0 in nine months. It
simply cannot happen.”

Making an appeal to Dev’s corporate allegiance,
Mark asked, “Don’t you realize that you’ll be let-
ting down the entire company if you don’t build it
when it is needed?”

Dev counterattacked, “Look, Mark, a year ago
when we were planning the 2.4 release, you
demanded that I deliver it in five months. I told you
then that we had two choices: Build it in five
months with an architecture that could not support
additional features or build it in eight months with
an architecture redesigned to handle many addi-
tional requirements. You chose the first option, so
it’s your fault that we’re in this mess now! The cur-
rent architecture simply cannot support the 3.0 fea-

100
Development completion date
0 |-
e /
70 |- =
2% /
850 [
e
& 40 |
30 |— ~
20 e
0 | T T T T T T T T 1 T T T T T T T T T
5 &cscocsc-&cogsse88e888888
- - W0 W 0 g o~ N M 1 W M~ O O N < O M~ 6 O O
T A s F 8 8 T L T T oD oD DT o oo o oes o
Date
tures. I need a full year to revamp it and then add Figure 1. Pl_'abahlllty
» of completing
the new features.
release 3.0 on
An hour later, they were no closer to a mutually
. schedule. The red
agreeable solution, so I presented a schedule prob- ctical ling
ability graph to the team. The curve in Figure 1 ve t’:?h ":;" _ep':
made it clear that the team had only a 32 percent s?" e es.lre
o nine-month time to
likelihood of delivering the project in nine et With thi
months—a level of risk that neither product devel- marl 7 .t' i Is
opment nor marketing was willing to accept. In I:;'JMII e ;onhlme;h
other words, Dev wasn’t lying. r :7 oint where the
During a short break, I asked Dev to consider e mehcmsst:stt;
what he would do if he owned a majority of the cu"_'es w_’s .a e
C . project’s likelihood
company stock, and the project’s success or failure of leting on
in the marketplace was key to his personal financial sc:":”; eimyn 7 92
success. Clearly, promising to deliver something in eree:tea;l:l y
nine months when it would actually take 12 would : . ¢ ‘ ’hl p ':, ,
not be productive. Delivering it in a year to a stale 0f‘r;ies‘:(anie leve

market also was not an option.

Dev responded by saying, “I would increase my
head count so that I could staff two parallel prod-
uct development teams. One team would work on
incorporating as many of the 3.0 features as possi-
ble into the old architecture. We could call it ver-
sion 2.5 and release it in around seven to eight
months. Meanwhile, the other team would start in
parallel to revamp the architecture and be ready to
deliver the full 3.0 capability in about a year.”

After we had reconvened and Dev made his sug-
gestion, Mark responded with “Wow! Would you
really do that for me?” We had finally reached a

L

G

*I have extracted parts of these case studies from my forth-
coming book, Just Enough Requirements Management (Prentice
Hall, 2003). The first and third studies are completely true as
described; only the names are fictitious. The second case study
is a compilation of several stories; each event described is true,
but the events did not occur in the sequence given, nor did they
occur at the same company. Case study 3 was described in detail
in A. Davis, “Can You Survive Your Management Mistakes?”
IEEE Software, July 1992, pp. 72, 85.

March 2003

a
<
=

[=3
{=]

Development completion date

oo
et
{

~
L]

[-23
=}
!

Probability
S

40
30
20
10 |
0 1 1 T T i T T T T T T T T T T T T l T
P T e e R w S~ B ~ I ~ VI~ BB X TR B N Y
2838838233333 2833s2ss8s s
TR S F S ST T T T oo d o oo o g
Date
Figure 2. Probabilit . . _
g) Y tentative agreement in principle. We worked a few
of completing

release 3.0in 12
months. The proba-
bility of success
jumps to 58 percent,
an acceptable risk
level.

_more hours to see if it was realistic.

First, we checked to verify that the 12-month
schedule for the 3.0 release was reasonable. Moving
the vertical line in Figure 1 to the right by three
months resulted in the graph in Figure 2, showing
that the likelihood of success jumped to 58 per-
cent—an acceptable risk level. But the real test
came next. To determine whether release 2.5 was
possible, we let the development team select the
subset of requirements they could include with the
old architecture. Figure 3 shows the resulting prob-
ability graph, which also indicates an acceptable
risk level.

At first, Mark was reluctant to sign up for the
proposed strategy; the requirements that Dev had
suggested did not make for a particularly impres-
sive product. Then Mark had a great idea. The pro-
posed release 2.5 was not as good as the products
the competitors were to release in 10 to 12 months,
but it was better than anything currently on the mar-
ket. Mark’s plan was to offer version 2.5 to cus-
tomers at a very low price, not even enough to
recover the company’s R&D and manufacturing
costs. In so doing, the company could seriously
dampen the market demand for the competing
products that would come out a few months later.
When the company released version 3.0, the com-
petitors’ products would not have already captured
the market.

CASE STUDY 2: SUPER-REQUIREMENTS

In spring 2000, I was consulting for an e-busi-
ness solution provider that was struggling over
what features to include in its next major product.
This company was unusual in that the vice presi-
dents of product development and marketing
seemed to respect each other. The development VP
trusted the marketing VP’s assessment of the chang-

Computer

ing market dynamics. The marketing VP trusted
the estimates that the development VP provided.
Both VPs realized that their employees needed to
work together to solve this marketing puzzle
instead of attacking each other, as in most compa-
nies.

The company had already had numerous brain-
storming sessions with their existing and potential
customers, which resulted in around 200 candidate
requirements. To satisfy all those requirements
would take around 18 months, but the customers
who were depending on their foundation solution
needed it in just six months.

My first recommendation was to begin with
fewer requirements. It would simply take too long
to perform triage on all 200. I suggested that they
group the requirements into small sets—features®
or super-requirements—that they could sell as a
package to aid a customer in satisfying one or more
business goals. The requirements within each set
also had to be closely related from an implementa-
tion perspective. That is, the developers could eas-
ily visualize how to implement them as a package.
After a two-hour discussion, we arrived at a list of
some 30 super-requirements.

We debated a variety of business strategies and
finally converged on the concept of building a series
of very small increments, while keeping customers
informed of all our plans. Our goal was to develop
a group of extremely loyal product users who
would always know the date of the next release,
the requirements the next release would satisfy, and
so on. We invited select customers to a meeting at
the corporate offices to explain our strategy and
what we needed from them.

It took a full day of discussion with the customers
to arrive at a schedule of 10-week releases and their
associated super-requirements. (The first release
would take a bit longer because we had to build
much of the supporting infrastructure.) We analyzed
the first five releases separately using graphs simi-
lar to Figures 1 through 3 to ensure that they were
feasible. The customers were excited. Marketing
was thrilled. Product development was confident
that they could deliver each release on time.

The first release of the product was created with-
out a hitch, within budget, and with no surprises,
and customers were satisfied with its functions.

Unfortunately, soon after the ficst release, new
customers emerged, market needs changed, and
cooperation started to ebb within the company. As
a result of the earlier meetings, product develop-
ment was making many technical decisions that
were based on the agreed-to releases and associated

super-requirements. When needs changed, the
esprit de corps began to erode. Rather than rethink
prior decisions, they viewed changing needs as a
threat to the success of the entire project.

CASE STUDY 3: CAPITULATION BASED ON FEAR
I'was a director at an R&D laboratory for a large
telecommunications company in the late 1970s.
One of my project managers was responsible for
building a software system for an operating divi-
sion of the same company. The division had con-
tacted us about doing the job because we had the
technical expertise to create the unique system.

The project manager carefully analyzed the job
and decided that he and his team could complete it
in about 12 months. However, the customer wanted
to have the system in nine months. When I discussed
our alternatives with the project manager, the first
idea was to dig in our heels. We knew that 12
months was already optimistic. We would simply
tell the customer that it couldn’t be done. The second
idea was to revise our schedule and agree to the nine-
month delivery. After all, it was not impossible (just
extremely improbable) that we could complete the
product in nine months,

We role-played the customer in each scenario.
The first scenario did not bode well for us. We
could visualize digging in our heels and hearing the
customer respond, “Fine, I'll go somewhere else to
get my product.” In that case, I would have had to
fire the project manager and his entire team because
we had no other productive work for them to do.
Consequently, fearing that we would lose our jobs,
face, or opportunity, we agreed to reduce the sched-
ule to nine months.

To no surprise, we failed to make the delivery.
Unlike many similar situations, we could not even
blame the customer for changing the requirements
during the development process because the
requirements did not change. Both the project man-
ager and I ended up eating crow. However, a few
months after the originally scheduled delivery date,
the customer’s priorities changed, and he deter-
mined that he would not need our product for some
time to come. We eventually delivered the product
in around 13 months from the start date.

HOW TO PERFORM TRIAGE

These case studies give a glimpse of what can
happen with a complex combination of personali-
ties, anxieties, changing markets, unknown require-
ments, poor planning, and inadequate analysis and
comparison tools. Practitioners need concrete
strategies to deal with these complexities and intel-

100

Development completion date

90 f——--

1) —

~
L=}

i

i

i

i

!

!

{

|

i
\

28
°
i
30
20
10 T o
0 T T T T T T T T ! T—=F 1 I T
5 5 5 55 5 5 N N N oo oo e el
S28sggsesceeeegsgy
D — N 5 6 D M~ 0 @ o < © ~ OO0 S
attsc::::QQQQQQQ
Date
. . Figure 3. Probabili
ligently analyze candidate requirements. On the afycom letin ty
basis of these case studies and my other experi- poTng
ffer 14 key recommendations releass 2.5, a com-
ences, | offer y : promise that
. includes a subset of
intain a list of requirements .
Waintain a IIStho cagdidate requirements as part the requirements for
r .
\Xll'h?n N tain them as e? list—ina s rfad- release 3.0. Again,
G chiiation, main uirements management tgol or Misisanacceptable
sheet, database, req & ’ risk level,

even a bulleted list in a word processor. You can
then more easily answer qUCStiOHS like, “How
many requirements do we have?” and “What per-
centage of the requirements are we planning to
implement in the next release?”

In most cases, it helps to maintain a hierarchical
list. Many hierarchies are possible, but the con-
tainment relationship is most often used as the basis
of a requirements hierarchy. If three requirements
are each part of (or represent a refinement of)
requirement A, they become A.1, A.2, and A.3 and
appear as children of requirement A in the hierar-
chical list. This practice makes it clear which
requirements subsume other requirements and
helps prevent meaningless arguments about incor-
porating requirement A or requirement A.2.

In case study 1, the team maintained a hierar-
chical list. In case study 2, the team maintained
super-requirements as a simple (nonhierarchical)
list for triage activities. However, behind the scenes,
they kept a record of which original requirements
were subsumed by each of the super-requirements.
In both cases, the lists served as the basis for intel-
ligent discussions about which requirements to
include and which to defer. In case study 3, the
team maintained requirements in a word-process-
ing file including requirements, oth/er sentences,
paragraphs, chapters, and so on, which made it
impossible to discuss any subset of the require-
ments and thus to reach a compromise about what
to include.

March 2003

After listing the
requirements,
the next step is
to determine the
degree of effort
associated with
satisfying each
requirement.

Record necessity interdependencies
Often a requirement makes sense only

when one or more other requirements are

also satisfied. For example, the requirements

¢ The system shall provide the Fiends and
Famine capability for our customers.

o The system shall bill customers $3 per
minute when they use the Fiends and
Famine feature.

have a necessity interdependency: There is no
value in providing either capability without
the other.
Requirements can also have a one-way necessity
dependency. For example, in the requirements

o The system shall provide a stop button in the
upper right corner.
e The stop button shall be red.

the first requirement makes sense without the sec-
ond, but the reverse is not true.

If you maintain requirements in a list, you can
simply maintain a column (field, attribute) for stor-
ing the necessity dependencies.

None of the teams in the three case studies
recorded necessity dependencies. In case studies 1
and 2, the teams maintained separate lists of viable
subsets of requirements that made sense from a cus-
tomer perspective. This practice worked well in both
cases for product development, but failure to explic-
itly maintain the interdependencies in the lists could
have had implications in later maintenance activities.

Annotate requirements by effort

Once the requirements are in a list, developers
should determine the degree of effort associated
with satisfying each requirement. Annotation helps
them do triage intelligently.

To decide whether to include or exclude a
requirement, you need to know approximately how
much effort it takes. The units of such calibration
are unimportant. Some companies use function
points or feature points; others use person-hours
or lines of code. For triage, any measure works as
long as you’re consistent.

You must take care to define the effort (e) asso-
ciated with requirements when they are organized
hierarchically. If requirements A.1, A.2, and A.3
are parts of requirement A, then you must main-
tain the property

e(A1) + e(A.2) + e(A.3) < e(A),

Computer

which becomes an equality if A.1, A.2, and A.3
cover all the functionality that A implies.

Effort dependencies also can exist between require-
ments that do not share a hierarchical relationship.
For example, requirement B may require three per-
son-weeks of effort to satisfy by itself, and require-
ment C may require five person-weeks, but once
requirement C is satisfied, satisfying requirement B
takes only two additional person-weeks. Here you
would record the effort dependency in yet another
column {or field or attribute) of the list or database.
In this case, the value for that field for requirement B
would contain an estimate of the corresponding effort
savings—namely, one person-week.

In case studies 1 and 2, the teams annotated
requirements according to the estimated effort
required to satisfy them, using person-weeks as the
measure. This practice aided intelligent discussions
of which requirements to include and which to
defer. In case study 3, the team only estimated the
effort to complete the project. Consequently, they
had no flexibility for negotiation; the choices were
either to build or not build the entire product.

Neither of the case study 1 and 2 teams actually
recorded effort dependencies. Instead they kept this
knowledge in their heads and expressed it as needed
during triage. Although this practice worked fine in
these cases, it might not work as well with longer lists
of requirements, constantly shifting requirements, or
in an environment with high employee turnover,

Annotate requirements
by relative importance

While developers are determining the degree of
effort needed to satisfy the requirements, other stake-
holders—customers, marketing representatives, or
consultants—should rank each requirement’s impor-
tance. Stakeholders’ input is critical, but if you ask
them individually to categorize requirements, you’re
likely to hear, “We need them all. That’s why we
listed them in the first place.” Instead, gather the
stakeholders in one location and follow a group vot-
ing mechanism, such as the hundred-dollar test.?
Using this test, stakeholders show their preferences
by distributing an imaginary one hundred dollars
among the requirements; the more dollars allotted
to a requirement, the stronger the interest.

Another alternative is to point to each require-
ment and ask for a show of fingers to indicate stake-
holders’ enthusiasm for including it in the next
release:

¢ One finger up says, “You should include that
requirement.”

* Two fingers up says, “If you omit that require-
ment, the product won’t be at all useful.”

* One finger down says, “You should exclude
that requirement.”

* Two fingers down says, “If you include that
requirement, the product won’t be at all use-
ful.”

* No fingers up or down says, “I am neutral
about including or excluding that require-
ment.”

Rarely will stakeholders vote the same way for
every requirement because their votes would then
have no effect on the overall decision.

Be careful when defining priorities (p) associated
with requirements if they are organized hierarchi-
cally. For requirement A and its subrequirements
A.1,A.2,and A.3, for example, you must maintain
the property

max(p(A.1), p(A.2), p(A.3)) < p(A),

which becomes an equality if A.1, A.2, and A.3
cover all the functionality that A implies.

In case study 1, the team did not maintain relative
priorities of candidate requirements. During triage,
stakeholders simply voiced their opinions about the
importance of requirements. Consequently, in the
initial triage session, the customer representative
(marketing) consistently demanded the inclusion of
almost every requirement. In case study 2, the team
collected and maintained relative priorities, which
made the initial triage session much easier. In case
study 3, no one had even enumerated requirements,
much less annotated them.

Do triage overtly

Individuals can perform many product develop-
ment activities in isolation. But to be successful,
triage requires input from at least three con-
stituencies: customers, developers, and financial
representatives. Triage becomes falsely trivial if any
one of these constituents is missing. Without cus-
tomers, financial representatives and developers
could decide to build all the easy requirements.
Without developers, customers and financial rep-
resentatives could decide that effort estimations are
exaggerated and should be halved. Without finan-
cial representatives, customers and developers
could decide to add more resources.

In case studies 1 and 2, the teams performed
triage in open meetings. However, in case study 1,
the absence of the financial representatives led to
the subsequent disintegration of the compromise

reached in the meetings. When they learned
about the decision, the financial representa-
tives refused to support the increase in staffing
for the development organization, and the
entire project had to return to the drawing
board. In case study 2, because the financial
representatives were present, the developers
proceeded through the first release with few
complications. In case study 3, the customer
was also the financial representative. This
position of power, although often unavoid-
able, makes negotiation more difficult.

Base decisions on more than mechanics

Dietrich Dorner writes that when man-
agers use purely mechanical means to arrive at a
decision, they have little stake in the outcome.’ If
the decision proves wrong, no ego is involved, and
they can simply declare that the mechanism failed.
When managers use tools to aid in making a deci-
sion rather than allowing the tool to make the deci-
sion, they are more apt to work toward a successful
outcome.

Thus, when using tools such as the cumulative
probability graphs in Figures 1 through 3, be sure
that the solution makes intuitive sense. You can then
make a triage decision because all stakeholders agree
that it makes sense, not solely because the graph says
a situation has a 73 percent likelihood of success.

Establish a teamwork mentality

In the more than 75 companies I have consulted
for, I have inevitably found enormous energy chan-
neled into adversarial relationships. Although this
type of tension can be positive, more often it leads
to months of infighting that stymies progress in
building the product. The schedule becomes moot
when the team argues for six months about
whether the product needs to be delivered in six or
nine months.

Case study 2 illustrates the positive benefits of
teamwork. Early in the process, everyone adopted
the philosophy that their company had a group
challenge of getting the best product to market as
soon as possible. They adopted a “we versus them”
rather than a “we versus we” attitude. A positive
attitude focuses the team on finding a solution that
assists all parties in winning;® an adversarial atti-
tude merely blurs the goals.

Manage by probabilities of
completion, not by ahsolutes

A typical exchange between marketing personnel
and product developers exemplifies thinking in

To be successful,
triage requires
input from
at least three
constituencies:
customers,
developers,
and financial
representatives.

March 2003

When attempting
to understand
customer needs
and determine
whether a product
can he built within
a given time,
nothing is ahsolute

absolutes. When attempting to understand
customer needs and determine whether a
product can be built within a given time,
nothing is absolute. The outcome can be any-
thing from highly unlikely to highly likely.
Once everyone recognizes this, negotiation
becomes much easier.

Instead of speaking in absolutes, make
observations based on mechanisms like
cumulative probability graphs. These graphs

. are based on data that is easy to collect, and
they help prevent adversarial absolute atti-
tudes about the project. Stakeholders can
then debate, think through the problem, and

arrive at a compromise based on constructive
observations such as: “If we include feature X in
the next release, the likelihood of delivering the
release in June drops from 40 percent to 3 percent.”

Collecting the data to support such graphs is
extremely easy. I generated Figure 1, for example,
from a table of past projects, with two data ele-
ments per project: the original estimate of effort,
using the same metric used for estimating require-
ments effort, and the actual project duration. Once
you have this data, creating the graphs is trivial. To
answer the question, “What is the probability of
completing X work units (by any measure) in six
months,” just look at the data to see what per-
centage of projects that projected X or fewer work
units managed to complete within six months.

Some may argue that such data is invalid: The
requirements change on a project, making the orig-
inal estimate incomparable to the actual comple-
tion schedule. My counterargument is that if
requirements changed, say, by 50 percent on all past
projects, they are likely to change about 50 percent
on the current project. Thus, we really are com-
paring apples and apples.

The teams in case studies 1 and 2 followed this
recommendation and were able to reach decisions.
In case study 3, no compromises were possible
because all positions were stated in absolutes.

Understand the optimistic, pessimistic,
and realistic approaches
The optimistic approach to triage is to assume
you can address all the requirements. If the likeli-
hood of success is too low, you remove require-
ments one at a time until the risk is acceptable. In
all three case studies, the team followed this
approach. It is popular because, in most cases,
every member of the team, regardless of affiliation,
truly wants to see all the customer needs satisfied.
The pessimistic approach is to assume you can

Computer

address none of the requirements. Your risk level is
likely to be very low, so you add requirements one at
a time until the risk is barely tolerable. This approach
works well when teams are composed of curmud-
geons who believe that little can be accomplished.

In the realistic approach, you assume that you
start off with some “reasonable” subset of require-
ments, then you add or remove requirements until
you reach an acceptable compromise.

All three strategies work, but it helps the team if
they understand what they are doing and why.

Plan more than one release at a time

Instead of planning the requirements for just one
product release, plan them for at least two. During
triage, the team typically analyzes each requirement
to determine if they should or should not include it
in the next baseline. This becomes a binary deci-
sion, with no middle ground. Instead, when a dead-
lock arises about including a requirement, establish
a consecutive release as an alternative. Suppose you
are planning which requirements to address in
release 2.5. Rather than forcing a binary decision—
put them in release 2.5, or don’t—plan releases 2.5
and 2.6 simultaneously. Now you have an inter-
mediate position. If the stakeholders cannot agree
about whether or not a requirement belongs in
release 2.5, just allocate it to release 2.6 if doing so
makes business sense.

This strategy was fundamental to the success of
case study 1, in which the team planned two releases
simultaneously and compromises were therefore
possible. In case study 2, a long series of releases were
planned, making compromises easy. Unfortunately,
the company saw this series as carved in stone and
did not allow for future flexibility.

Replan hefore every new release

Although I recommend planning at least two
releases at a time, you must replan every release as
soon as you complete the previous release. When
the development efforts for two consecutive
releases overlap, replanning for the second release
must of course take place before you finish the pre-
vious release.

Replanning prevents using decisions made on the
basis of yesterday’s information to drive tomor-
row’s actions. Instead, you are always updating the
plan for each new release on the basis of your
knowledge about the current market.

Case study 2 shows what can happen if the team
doesn’t replan. As market conditions changed, the
developers stubbornly clung to old agreements,
which created turmoil when marketing wanted to

change the strategy.

All team members need to understand that the
world will change regularly, and that the agree-
ments they make today are based on what they
know now—made in the interest of moving ahead
with the project. Tomorrow they could make new
decisions based on what they know then.

Don’t be intimidated into a solution

When product development is pressured into
accepting a schedule that has an unacceptably low
probability of success, every member of the team
loses. Disaster often occurs when an organization
staffs for a product release and plans its revenue
forecast based on a false expectation of product
release. In many situations, as in case study 3, the
development organization is intimidated into com-
pressing a realistic schedule, resulting in either poor
quality or late delivery.

Intimidation can also force marketing into
accepting a date that is technically feasible but pre-
sents a marketing nightmare, which has an equally
unacceptable result—a product delivered late in the
market window.

The antidote to intimidation is to seek an innov-
ative combination of releases, pricing strategies, and
marketing ideas, as in case study 1. The right tools
are also important. In case study 3, we might not
have been intimidated into a six-month schedule if
we could have shown the customer some cumulative
probability graphs. In this case, the graphs would
have clearly shown that the six-month schedule
would result in a lose-lose outcome.

Find a selution before you proceed

Too often, companies that can’t find a compro-
mise decide to just march ahead toward an impos-
sible delivery date or a stale market, hoping that
something will change. They are correct that some-
thing will change, but the changes are almost
always for the worse.

Remember that perfection is impossible
Many companies spend all their energy pursuing
the perfect product or the perfect product strategy.
Ironically, the time spent trying to achieve perfection
is the very thing that sabotages perfection. As Robert
Meltzer noted, “It is better to be 90 percent right
today than 95 percent right six months from now.”’

that is critical to the success of any product
development, yet companies rarely practice it.

H equirements triage is a multidisciplinary art

Not following this approach can result in years of
infighting among project stakeholders, products
that fail to satisfy customer needs, and consider-
able loss of revenue. On the flip side, practicing
triage enables companies to foster cooperative,
low-stress development environments, build prod-
ucts that meet their customers’ needs, complete
projects on schedule, and optimize their return on
investment. #

References

1. A. Davis and A. Zweig, “Editor’s Corner: The Miss-
ing Piece of Software Development,” J. Systems and
Software, Sept. 2000, pp. 205-206.

2. D. Leffingwell and D. Widrig, Managing Software
Regquirements, Addison-Wesley, 2000.

3. K. Wiegers, Software Requirements, Microsoft Press,
1999.

4. E. Yourdon, Death March, Prentice Hall, 1997.

5. D. Dérner, The Logic of Failure, Addison-Wesley,
1996.

6. H.In, “Applying Win-Win to Quality Requirements:
A Case Study,” Proc. Int’l Conf. Software Eng., IEEE
CS Press, 2001, pp. 555-564.

7. R. Meltzer, “Accelerating New Product Develop-
ment,” The PDMA Handbook of New Product
Development, M. Rosenau Jr., ed., John Wiley &
Sons, 1996, pp. 345-359.

Alan M. Davis bas more than 20 years’ experience
in industry. He is a professor of information sys-
tems at the University of Colorado at Colorado
Springs and author of more than 100 papers and
two books: Software Requirements: Objects, Func-
tions and States (Prentice Hall, 1993) and 201 Prin-
ciples of Software Development (McGraw-Hill,
1995). Davis received a PhD in computer science
from the University of lllinois and has been a Fel-
low of the IEEE since 1994. Contact him at
adavis@uccs.edu.

March 2003

