gt Ampenienn dpar

¥ vwie eaEg 0

N

A v wdwd § g es

FOCUS

Distributed
Development

oftware development is rarely a solo coding

effort. More often, it is a collaborative process,

with teams of developers working together

to design solutions and produce quality code.
The members of these close-knit teams often look at
one another’s code, collectively make plans about
how to proceed, and even fix each other’s bugs when
necessary. Teamwork does not stop there, however. An
extended team may include project managers, testers,
architects, designers, writers, and other specialists, as
well as other programming teams. Programmers also
interact with the community of developers outside
their organization to obtain advice, code snippets,
and a general understanding of what works and what
doesn’t.

Despite its benefits, collaboration can be time-
consuming and problematic. Studies show that the
escalating number of meetings, e-mails, discussions,
sourt control management tasks, and other coordina-
tion efforts are leaving less than half of the workday
to do any real coding. But we cannot simply walk

Edit
!

Compile
|

Run
)

[)ebug
!

T o1 5 BT T

{9 PR S TP L R

Co”aborate?

LITE CHENG, IBM RESEARCH

CLEIDSONR 8. DE SOUZA, UNIVERSITY ;
OF CALIFORNIA, IRVINE, AND "
FEDERAL UNIVERSITY OF PARA, BRAZIL Y

SUSANNE HUPFER, [BM RESEARCH

JOHN PATTERSON, IBM RESEARCH

STEVEN ROSS, IBM RESEARCH

bieme X ew e

TamEy

e
Ta

Distributed
Development

away from meetings, turn off our e-mail, and hide in our
cubes. We cannot ignore the trend toward an increas-
ingly interconnected world where development teams are
distributed around the globe. Indeed, a major problem in
software development is the breakdown in communica-
tion and coordination among developers.

There are ways to confront these concerns: Better
managerial processes, team-building training, careful
architectural design, disciplined approaches to coding
together, and agile software development practices can
help significantly. (For more information on collabora-
tion and software development, see Resources on p. xx of
this issue.) Tools can help us collaborate without being
dragged off to the meeting room. Examples include con-
figuration management and bug tracking systems, as well
as e-mail. Web sites such as SourceForge' integrate these
tools into a single integrated online experience and are
the hub of many distributed development projects.

From the individual developer’s perspective, the IDE
(integrated development environment) is where coding
takes place and is the home of many different develop-
ment tools. If coding is a team effort, then why not add
collaborative capabilities to the IDE toolset alongside the
editor, compiler, and debugger? In this article, we explore
this notion of integrating collaboration into the IDE.

WHY INTEGRATE COLLABORATION?

Collaborative tools such as e-mail and instant messag-
ing (IM) have existed outside the IDE for a long time. So,
what is the payoff of folding such tools into the IDE? Let’s
examine this by considering examples using configura-
tion management, screen sharing, and e-mail/IM.
Configuration Management. Tools such as CVS
(Concurrent Versions System) are the central repositories
of the software development team. They are also very
structured collaborative tools: They allow developers

to exchange, modify, mark, and merge files in a coordi-
nated manner. While powerful, these tools are complex,
especially for large development projects. By integrating
configuration management into the IDE, we eliminate an
extra step to perform shared file management operations.
A good integration would give the developer the illusion

42 December/january 2003-2004 QUEUE

that using configuration management is no more difficult
than using the local file system to manage local files. The
payoff here is similar to the benefits of integrating tools
such as the debugger and the linker into the same IDE:
Integration saves time and effort spent switching over to
other tools and reduces the learning curve, only requiring
familiarization with a new feature in the same IDE rather
than learning an entire new stand-alone tool. Grady
Booch and Alan Brown call this reducing friction in the
software development process.?
Screen Sharing. A common occurrence in the course of a
developer’s workday is to ask a colleague to come over to
help figure out a problem with some code. Although this
usually involves a lot of explaining and discussing, the
end result is that the code gets fixed more efficiently than
if the programmer had pored over the problem alone.
Getting another person’s viewpoint is codified in prac-
tices such as code reviews, pair programming, and—on a
larger scale—open source software development. Screen-
sharing tools such as VNC (Virtual Network Computing)
have been used to facilitate this kind of consultation for
distributed teams.

If the screen sharing were integrated into the IDE,
the developer could “reduce the friction” by shortcut-
ting through the usual startup overhead of finding the
IP address of the teammate, configuring the screen-shar-
ing service, and so forth. Perhaps more interestingly, an
integrated solution could save the screen-sharing session
(and an electronic transcript of the accompanying IM
chat or phone call) with the file of interest into the code
repository. Thus, another payoff of integration is context:
The collaboration is initiated, run, and saved where the
action is—in the IDE—and collaborative artifacts imme-
diately can be associated with the code that concerns us.
The conversation in context never leaves the IDE, stays
focused on the teamwork between the participants, and
can be accessed in the future from the context in which it
occurred.
E-malil and IM. Taking context up another notch, ad hoc
communication tools such as e-mail and IM are often
used for development. Messages might be announce-
ments about the latest check-in to the source control
system or a discussion about a particular bug. The mes-
sages might contain project-specific references (e.g., URLs,
package and file names, code repository locations) or
pasted code fragments. Composing such messages in an
IDE that integrates e-mail and IM could automatically
tie developers’ informal discussion to formal source code
and repository branches. Thus, the mere act of copying
and pasting code can form a two-way link between the

rants: feedback@acmqueue.com

discussion about code and the interconnected network of
project files and documents. The third payoff of integra-
tion is thus traceability: The questions and answers about
a piece of code, which would normally have been hidden
away on an e-mail server or lost in a transient IM, would
be a form of code annotation that supplements format
documentation. E-mail or chat discussions between two
team members may often be of interest to the entire
team. This informal “writing on the wall” can be helpful
when new developers are spelunking through undocu-
mented legacy code. Lines of code can also be associated
with whoever discussed them, which is invaluable when
tracking down leads.

CHALLENGES

Integrating collaborative capabilities into the IDE holds

great potential for easing programmers’ development

activities. This integration introduces a number of techni-

cal and design challenges. Major issues include:

* Building for extensibility, interoperability, and flexibility

* Choosing and designing the “right” set of collaborative
features

* Supporting transitions between individual and group
work

Let’s take a look at these challenges.

Building for Extensibility, Interoperability, and
Flexibility. Integrating software is often a less-than-
straightforward task, and there are challenges particular
to integrating collaborative capabilities. For starters, it
helps if the IDE being extended has an architecture that
supports extensibility to begin with. Many commercial
systems are extensible, with the intention of opening
the door to third-party vendors whose components can
increase the value of the IDEs. Being able to plug a collab-
orative extension easily into an IDE helps reduce friction
for tool developers.

Integrating collaborative capabilities that enables the
benefits of context and traceability, however, requires
deeper extension mechanisms in an IDE than simply
making an extension show up in the IDE’s user inter-
face. Context and traceability require access to models
underlying the IDE: the file system, the comp‘ﬂer and
syntax-checking mechanisms, networking, an
control system. To assist developer-related-p
integrated collaborative tools need to underst
models and artifacts the developer is using in.
Extensions to the IDE should be first-class ci
capable and flexible as any feature shippin,
For example, enabling the chats (and chat
properly highlight code syntax and hypei]

more queue: www.acmqueue.com

code modules requires access to mechanisms used by the
IDE to manage its syntax and modules.

Another consideration related to this requirement is
that the IDE’s search facility should be extensible enough
to include whatever artifacts are generated by collabora-
tive add-ons. You have only to note how useful it is to
search newsgroups, discussion boards, and Web sites for
tips and hints from fellow developers to realize how pow-
erful this capability would be. Integrating IDE search with
collaborative artifact search reduces friction (file-based
and knowledge-based search become the same). If closely
integrated with the IDE's core functions, a search can

Ad hoc communication
tools such as e-mail and

instant messaging are often used

for development.

become even more contextual and traceable. For example,
clicking on a word in the editor or a file in the file viewer
would bring up a search context menu to locate related
documents and discussions.

Interoperability is another issue to consider. Develop-
ers use different vendors’ tools, even within the same
IDE. Also, a collaborative IDE may be used to interact not
only within the same organization, but also with external
teams or customers. Interoperability issues can arise with
vendor-neutral server-side services for collaboration (e.g.,
IM, e-mail, source control, screen sharing, name directo-
ries) and abstract APIs (application program interfaces)
offered by the IDE. Open standards and protocols are
helpful here, or the development team must agree upon
the same set of messaging and collaboration protocols.
The IDE’s vendor needs to provide a flexible and exten-
sible API—not tied to any specific implementation—for
access to services. For example, accessing the source-con-
trol system from within the IDE would ideally be virtual-
ized in a vendor-neutral API.

Building for flexibility is another challenge that should
not be overlooked. The collaborative add-ons to an IDE
should themselves be extensible by outside contribu-
tors—ideally, the developers who use them. The norms,
practices, and needs of any development team vary and
can change over time. Thus, collaborative capabilities
need to be just as flexible as the social fabric of the team.

QUEUE December/January 2003-2004 43

w
o
O | Distributed

LL_| Development

For example, a chat that can be linked to source code

in the IDE may also need to be linked to design require-
ments stored on an external server running a project
management system. Customization can come from user

preferences, of course, but situations may arise beyond
the scope of the collaborative add-on. A documented API
enabling tool extensions, preferably consistent with the
IDE’s API, would be helpful.

An IDE augmented with collaboration requires some
kind of supporting network infrastructure. Designing
such an infrastructure raises the interoperability issues
mentioned earlier (e.g., support for directory services,
standards for messaging, etc.). Also, software supporting
collaboration must be flexible enough to include artifacts
and models specific to the IDE environment. For exam-
ple, metadata that links source code with e-mail needs to
be stored somewhere—perhaps with a special header field
or with an URL. Where to store collaborative artifacts is
another issue: You could try to juggle muitiple stores (e.g.,
one for e-mail, one for source code, one for discussion
forums, one for chat transcripts, one for bug tracking,
etc.), or you could attempt to consolidate everything into
a single store (e.g., the source-control repository). The
former might complicate the administration and configu-
ration of such a system. The latter case is therefore very
appealing, but the question then becomes how flexible
and extensible the single store is and whether it will be
an acceptable solution when the development team starts
interacting with outside organizations.

Choosing and Designing Collaborative Features.
Choosing the “right” set of collaborative features to inte-
grate with an IDE is a difficult task. Development groups
are distinctive and work in unique ways, with their own
methodologies, processes, and conventions. Different
groups will find different collaborative features useful,
because each has its own history, culture, working style,
and organizational demands. For example, one particu-
lar group in an organization might adopt the practice

of using chat to convey some types of information and
e-mail for others. Some teams may use CVS for source-
code control, whereas others may use IBM’s Rational
ClearCase. A team'’s requirements and development

44 December/January 2003-2004 QUEUE

processes are also fluid over time, and their collaborative

needs can change.

The choice of collaborative features might also change
as a result of organizational requirements and external
influences. For example, today more and more software
development organizations are seeking certifications
such as ISO 9001 and CMM (Capability Maturity Model),
which means that changes in the software must be docu-
mented, reviewed, and authorized before they are inte-
grated into the code. The underlying idea is that changes
must be accountable. This affects the choice and/or usage
of collaborative features. For example, recording chat
conversations may be mandatory in such organizations
requiring accountability.

The individuality of development teams and their
enterprises thus suggests some guiding principles for
adding collaborative capabilities to an IDE. Ideally, these
collaborative features should:

* Avoid embedding or enforcing a rigid notion of what
the “correct” development process should be, as this
varies from team to teamn and enterprise to enterprise.
Instead, the features should accommodate a variety of
processes, both formal and informal.

* Provide a flexible collection of ways that developers can
collaborate, so that groups can choose which features to
use in their particular situations.

* Be configurable and extensible by the developers them-
selves.

While not an exhaustive list, the following capabilities
can flexibly accommodate many of the ways program-
mers work together:

* Provide peripheral awareness of other programmers and
their activities (who is doing what around our code,
especially code that you depend on).

* Support a variety of communication mechanisms (text,
voice, visual).

¢ Integrate with the team’s source-code control system
and bug tracking system.

* Support “in context” communication, both synchro-
nous (chat, screen sharing) and asynchronous (code
annotations, persistent chats, team documentation).

* Support searching through saved team artifacts and the
development history.

Supporting Transitions Between Individual and

Group Work. One important aspect of any collaborative

effort is that it is often composed of a web of individual

and collaborative activities. In software development
settings, this distinction}is desirable and indeed often

enforced by formal practices and tools. For example, a

developer may choose to work in a private branch in the

rants: feedback@acmqueue.com

o5 pa i

.

-

source-control repository and contribute to the main
development stream only for integration milestones. The
private branch thus becomes a “sandbox” for personal
experimentation and testing closed off from the busy
“outside world” of the team.

A natural consequence of this distinction between
individual and collaborative work is the need to support
the transitions between those aspects—that is, to assist in
deciding when and how to move from the individual to
the collaborative activities and vice versa. These transi-
tions are particularly important because of the interde-
pendencies inherent to any software development effort.
Indeed, some tool support has already been provided for
these transitions—for example, through source control
tools’ merging mechanisms, which allow several ver-
sions of the same file modified by different developers to
be easily integrated. These tools are based on syntactic
information (lines of code), however, and cannot process
semantic information; they are limited in the support
they can provide to help software developers understand
the impact of the individual work on the larger col-
laborative effort of the whole team. Tying in less formal
collaborative tools here provides mechanisms that allow
developers to coordinate and alleviate this problem.

Another challenge of supporting the individual and
group work dichotomy relates to attention management,
interruptions, and information overload. If a collabora-
tive feature is too distracting, it can interfere with every-
day wortk rather than support it and may be summarily
rejected by developers. Each user needs to have complete
control over how a feature should deliver alerts, how to
specify the appropriate times for interruptions, and how
to quickly filter and sort relevant from irrelevant informa-
tion. Collaborative tools need to take into account that
developers will sometimes feel more interruptible and
collaborative, and other times will be “in the zone” and
want to shut out all distractions.

JAZZ: A CASE STUDY
A working example of integrating collaboration into an
IDE is Jazz, a research project at IBM focusing on a spe-
cific set of collaborative features for the Eclipse IDE.? The
objective is to nurture the “immediate team” of develop-
ers as a thriving social group, while capturing the team’s
artifacts to provide a useful backdrop and context for
communication.

In the Jazz-enhanced IDE, everyone on the team is a
first-class member of the environment, on par with files,

Jazz’s Person-Centric Collaborative Features in the Eclipse IDE

s

! () Chang status (1 am sy working on ActinPane.java,
8 Manage your teams
Y

View your active files

e

* places, and detailed Info). Aetio

8 Manage this team
Uss this team’s latest Jazz Set ¢ hng?
: 7 oabi e S e e e

O | bhoPatomnsteveRon Cedson BryinClak Kuhd

I 9 Share using. ..
View this person’s active fles

Make a fast view for Bryan Clark
4, Place & phone call to Bryan Clvk

(a) Pop-up menu to set the user’s
status message and manage all
teams. On the bottom right of
each portrait is the user's M
status. Offfine team members

have dark grayscale portraits.

{b) People are grouped in user-
defined teams. {c) Hovering over
portraits reveal their online status
messages. (d Pop-up menu for a
team member reveals options to

start a chat and a screen share.

Probies | Jazz Band

B |

. Li-Te:T am offine (#s of 6:09 PM EDT, Oct 24/013)

more queue: www.acmqueue.com

QUEUE December/January 2003-2004 45

Distributed
Development

%)
-
O
o
L

folders, and libraries. We provide a facility similar to an
IM buddy list to monitor who is online and coding or not
(see figure 1). The IM status message can automatically
incorporate contextual information such as what file the
developer is currently working on. Developers can initiate
chats, which can be saved as code annotations or into a
discussion forum, or use other communication modes
such as screen sharing and VoIP (voice-over-IP) telephony,
without any additional setup overhead (i.e., setting up
servers, configuring IP addresses, etc). Thus, these capabil-
ities reduce friction by being readily available within the
coding environment and provide context and traceability
by enabling developers to converse around code and link

Jazz’s Resource
Awareness

FIG 2

" Java - ActionPane. java - Fclipse Platform

% lpackage com. ibm.rese
St 2
R 3import org.eclipse.s
E < 3 T N 4import org.eclipse.s
- {3} ActionChokce.java
. Ce ; S5import org.eclipse.s
%:5 j %xm“ a'ma % 6import org.eclipse.s
5 e Acts ”s”;v’a: 7import org.eclipse.s
- o M gimport org.eclipse.s

9import java.util.Vee
10import java.util.Has
R) java

H ;; * ro-da:

(a) Files with local changes are decorated with colored icons on the bot-
tom right of each file icon. (b) Too]tips over a file reveal who made the
local clﬁange (e.gq file size, last modified date). The ability to discover at

a g|ance who was responsil)]e for the changes incorporates traceal)ihty

46 December/january 2003-2004 QUEUE

messages and status information with code artifacts.

Jazz also provides resource-centered awareness. As
shown in figure 2, files and other resources in the file
viewer are decorated with colored icons to indicate what
other developers are doing with their local copies of
the files (e.g., indicating that a file is in focus and being
edited at this very moment or that a file has been locally
saved but not checked back into the code repository).
Tooltips on the resources reveal who is responsible for
these changes. Merging these indicators into the IDE’s
file viewer reduces friction by saving the developer from
having to go outside the IDE and manually dig for such
information. These indicators provide the developer with
the same kind of peripheral awareness of the activities of
others on the team as would be available if the team were
all working in proximity. Also, these indicators appear in
context, where the developer normally manages files, and
this additional information is blended with cues normally
associated with files (e.g., file size, last modified date).
Moreover, the ability to discover at a glance who was
responsible for the changes incorporates traceability.

For more information on Jazz, see our workshop
paper, “Jazzing up Eclipse with Collaborative Tools,”*
from the Eclipse Technology Exchange Workshop at
OOPSLA 2003. For additional examples of collabora-
tive capabilities integrated with the Eclipse IDE, turn to
“Eclipse: An Example of Collaborative Tools in the IDE”
on page 47 of this Queue article.

LESSONS LEARNED

Our experiences with the Jazz Project have pointed out
some interesting implementation issues to keep in mind
when integrating collaboration into an IDE. These are
the major lessons that we learned:

Open or Standardized Protocols Increase Choice
and Ease Deployment. To accomplish screen sharing
in Jazz, we chose to integrate a TightVNC client and
server;® this screen-sharing software uses the standard
RFB (remote framebuffer) protocol used in VNC.¢ Given
this choice, we could experiment with plugging in dif-
ferent brands of VNC clients and servers. A non-Jazz user
can even host a screen-sharing session to Jazz members
or join a session taking place within Jazz. For example, a
quality-assurance analyst who is working within a differ-
ent software-testing environment may collaborate with
a developer working within the IDE. IM could benefit
from the flexibility of using open standards as well:
Developers can chat within their IDE, as well as with
managers and others external to the IDE. Deployment
becomes easier if the IDE’s IM system works with the

rants: feedback@acmqueue.com

company’s existing messaging infrastructure.
Open, Portable, Extensible APIs Allow
Customization Beyond the IDE's Specification. In the
case of our TightVNC server, we are using a Windows
DLL (dynamic link library). Despite following the VNC
protocol, this component is not immediately portable
to a different language and platform. If the TightVNC
community were to publish an open Java API for screen
sharing, the job of porting our JNI (Java Native Interface)-
based screen-sharing capability to an alternate platform—
say, Linux—would be much easier.

APIs can be “open” on two levels: open source (the
developer can directly read the source code) or open APIs
(the developer can easily access an extensible API). In

Eclipse: An Example of
Collaborative Tools in the IDE

Adding collaborative features into IDEs is not a brand new
idea. Commercial products, open source, and research

work already exist and continue to evolve. IDEs such

as Eclipse (http://www.eclipse.org), NetBeans (http:
/Iwww.netbeans.org), and Intelli) (http://www.intellij.com)
seamlessly integrate configuration management tools—-an’
example of collaborative tools used by software developers

in different contexts to coordinate their work. Here we reflect
on Eclipse-related technologies for examples of collaborative
tools integrated within the IDE.

COMMERCIAL PROJIECTS

CodeBeamer

and CodePro Studio

Commercial products that enhance IDEs with collaborative
capabilities such as messaging, project management, and
shared data.

http://www.intland.com/
http://www.instantiations.com/codepro/

OPEN SOURCE

Stellation

An open source effort (led by IBM Research) that introduces
fine-grained source control—tied to the notion of activities—
to simplify collaboration and provide awareness of changes
to team members. It features lightweight activity authoring
and file associations, enabling developers to manage relevant
work, notify the team of their current work, be informed of
changes pertaining to their own activities, and provides a
context for persistent conversations.
http://www.eclipse.org/stellation

more queue: www.acmqueue.com

the case of Jazz, we were fortunate that Eclipse had both
of these attributes. IDE makers probably can’t anticipate
all the needs of a developer integrating collaboration (or
some other unforeseen functionality), but they can help
by providing an extensible API.

Consider the resource-centered awareness we added to
Jazz: Eclipse allows us to define an extension for file deco-
rators (normally used to put indicators like compilation
error markers on files in the file manager) that lets us put
colored icons on the files to indicate what developers are
doing with them. The ability to examine the open source
code proved even more helpful: Eclipse provides a generic
API for source control, but it was too limited for our aim
of enabling resource awareness. Because we could read

' GlI.D (Groupware-enabled Integrated benmmg and
-Development)

A research project investigating how a collaboratlon-enabled
IDE can help students learn programming more effectively.
http://gild.cs.uvic.ca/docs/overview/innovate.pdf

Hipikat

A research project that ties Eclipse’s search with newsgroup
and Bugzilla information.
http://www.cs.ubc.ca/labs/spl/projects/hipikat/

PLUGINS

Thanks to its extensible architecture, the Eclipse IDE has a
thriving community of collaborative plug-ins. The Eclipse 3.0
milestone integrates a:“CVS blame” feature into the editor:
Developers can:select a line in the editor and find out who
was responsible for writing the line of code.

Sangam

A plug-in that features a shared editor and chat for pair
programming.

http://sangam.sourceforge.net

Composent

A plug-in that provides a variety of collaborative capabilities,
including group chat, file sharing, co-browsing, and team
awareness.

http://composent.com/code/eclipsesite/

Koi

This project is building a collaborative infrastructure for
Eclipse applications.

http://www.eclipse.org/koi

QUEUE December/January 2003-2004 47

Distributed
Development

the source code, however, we were able to locate the CVS
implementation of the generic API, and it serendipitously
provided public APIs that supplied the functionality we
needed.

The open source code also came to the rescue when we
were triggering chats around selected source code in the
editor. Using a context-menu API, we were able simply to
add a new right-click menu item to start a chat around
a selected line of code. When we wanted to dynami-
cally display a list of possible chat partners in a submenu
cascading off the main menu (to enable “one-click” chat-
ting), however, we found the API didn't support dynamic
menus. In this case we examined the source code of
the code editor, discovered where we could obtain the
actual menu handle, and then inserted code to form our
dynamic menu. Once again, extensible APIs enabled us to
get our “foot in the door,” and open source let us go even
further—all without bothering the original developers of
the IDE.

Build IDE Add-Ons for a Seamless User Experience.
Much of the work in these examples relates to the Ul
(user interface) model of the IDE (e.g., making items
appear in a context menu or putting icons on the files in
the file explorer). The better the Ul model is exposed to
the developer, the easier it is to achieve these Ul features,
and the smoother the user experience will be. To the user,
these new collaborative contributions should feel as if
they are native to the IDE; they should be straightforward
to use and not require a mental context shift.

One example of a seamless user experience is our
“Jazz Band,” or buddy list. A standard IM buddy list can
occupy as much space as it wants on a desktop or can live
minimized in the system tray. In the IDE where space is
at a premium, the developer might want the list to be as
compact as possible. Our solution was to build the Jazz
Band Ul so that it automatically exposes more (or fewer)
details depending on how much space the user allots to
it. This is a more continuous, finer level of Ul granularity
than in a typical stand-alone application: Names, images,
status messages, and decorators appear, scale, or disap-
pear, depending on the available space.

User IDs for Different Collaborative Features Need to

48 December/january 2003-2004 QUEUE

be Coordinated. Considering that collaboration involves
people interacting, it’s not surprising that a major techni-
cal hurdle is reconciling user IDs among the different
collaborative tools. This is especially compounded in an
IDE because you're mixing and matching many tools: IM,
source control, e-mail, and screen sharing can all be using
different sets of IDs. We encountered this problem when
implementing awareness of individuals using shared
resources; we chose to map IM user IDs to/from source-
control user IDs on the client side, as all of the user
information was stored locally. This may not be true for
all systems, so in other cases a unifying directory such as
LDAP (Lightweight Directory Access Protocol) is useful.

Having multiple user IDs from multiple collaborative
tools also means multiple passwords and sign-on mecha-
nisms. Ideally, sign-on should be kept automatic, or at
least down to just one prompt for a user ID and password.
Again in Jazz, sign-on data is available locally, but this
gets more complicated for other systems dependent on
central usernames or user domains.

Also, collaborative tools such as IM may be used
simultaneously by the same user, both inside and outside
of the IDE, and therefore need to accommodate multiple
sign-ons of the same user from the different contexts.
These IM sessions need to be reconciled and operate in
harmony. In the case of Jazz, we sidestepped this issue
because we had our own IM system. IM systems need to
support either parallel sign-ons of the same account on
the same machine or a notion of personas—where a user
ID may have several personas representing different con-
texts, or the IM system centralizes requests from different
contexts. This problem seems to be specific to synchro-
nous applications such as IM and screen sharing.
Realtime Awareness Needs Support for Push-Based
Notification. One requirement that our implementa-
tion exposed early on is the need for servers that can
signal state changes to clients. In the case of integrating
information from the source-code control system, we
discovered that CVS cannot notify clients; we were forced
to make clients periodically poll the server to determine
if there had been any relevant changes in the reposi-
tory. We take good advantage of the signaling capability
of our messaging system. Indeed, IM systems typically
signal state changes, but other collaborative stores such
as e-mail and Web-based systems often rely on automatic
or even manual polls from the client; this doesn’t fit well
with the notion of realtime awareness that we aim to
achieve in the IDE. 4
Address Software Developer Concerns Before
Deployment. To assess potential problems in our proto-

rants: feedback@acmqueue.com

type, we conducted 14 interviews during summer 2003
with professional software developers at IBM. Although
our prototype was still under development, we used story-
boards with mock screenshots (which we had used to
plan our design earlier) as conversation pieces during the
interviews. Information overload was an important con-
cern that emerged. Although the ability to record chats
sounded extremely useful as a means of documenting
important design decisions that would otherwise be lost,
some developers pointed out that certain conversations—
for instance, ephemeral ones—should not be recorded

because doing so would make finding relevant informa-
tion in Jazz difficult. Privacy was another concern raised
by the software engineers during the interviews. Some
users expressed apprehension that the resource-centered
awareness feature might be used by unethical managers
to monitor their work, instead of being used as a coordi-
nation aid to avoid conflicting changes. Those concerns
will be addressed in our continued work on Jazz.

CONCLUSION

Collaboration plays an integral role in software devel-

RESOURC

Much has been studied in the area of collaboration in soft-
ware development. Here is a small sample of introductory
articles related to the discussion presented here:

Architectures, Coordination, and Distance:
Conway’s Law and Beyond

J. Herbsleb and R. Grinter

IEEE Software (Sept.-Oct. 1999), 63-70.

Reports findings of a study of various distributed software
development teams at Lucent, with interesting discussions
on the role of informal communication, as well as cultural
factors in distributed multi-site software development.

Breaking the Code: Moving Between Private and
Public Work in Collaborative Software Development
C. de Souza, D. Redmiles, and P. Dourish

Proceedings of the ACM GROUP (Nov. 2003).

Describes a set of formal and informal work practices
adopted by the members of a software development team
to minimize the impact of an individual’s work when made
available to the other team members.

Collaborative Development Environments

G. Booch and A. W. Brown

Advances in Computers 59 (Aug. 2003)

Presents the motivations for collaborative development
environments in general, including the notion of “reducing
friction.” Also surveys various solutions for software develop-
ment teamwork.

A Field Study of the Software Design Process for
Large Systems

more queue: www.acmqueue.com

B. Curtis, H. Krasner, and N. Iscoe

Communications of the ACM 31(11) (Nov. 1988), 1268-1287.
Describes the three main problems of designing large
software systems identified by the authors, namely: the thin
spread of application domain knowledge, fluctuating and
conflicting requirements, and communication bottlenecks
and breakdowns.

People, Organizations, and Process Improvement

D. E. Perry, N.A. Staudenmayer, and L.G. Votta

IEEE Software 11(4) (July-Aug. 1994), 36-45.

Presents a study measuring how much developers spent their
time on coding versus noncoding activities, and describes
issues, such as a reluctance to use e-mail, that can impact the
development process.

Palantir: Raising Awareness Among Configuration
Management Workspaces

A. Z. Sarma, A. Noroozi, and A. van der Hoek

Proceedings of the ICSE (May 2003), 444-453.

Presents a tool, Palantir, that augments individual configura-
tion management workspaces with information about other
members of the software development team, therefore facili-
tating the coordination and reducing conflicting changes.

Using a Configuration Management Tool to
Coordinate Software Development

R. E. Grinter

Proceedings of the COOCS (1995), 168-177.

Describes the essential role played by the configuration
management system in coordinating a team of software
developers.

QUEUE December/january 2003-2004 49

Distributed
Development

opment, and developers can benefit greatly from the
integration of collaborative features with the IDE. While
collaborative tools can certainly be used alongside the
IDE, integration brings the payoff of reduced friction in
the development process, a greater sense of context, and
immediate traceability between collaborative artifacts
and code artifacts. Integrating collaboration into the IDE
raises a number of challenges, including requirements
for extensibility, access to the IDE’s underlying models,
interoperability, and network infrastructure. Collaborative
features need to be chosen carefully to meet the needs of
the team and should take into account issues of indi-
vidual versus collaborative work. While our discussion
centered on coding, collaborative tools can also contrib-
ute to other aspects of development—including project
management, modeling, testing, and documentation. Q

REFERENCES

1. SourceForge: see http://www.sourceforge.net.

2. Booch, G., and Brown, A. Collaborative development
environments. Advances in Computers 59 (Aug. 2003).

3. Eclipse IDE: see http://www.eclipse.org.

4. Cheng, L., Hupfer, S., Ross, S., and Patterson, J. Jazzing
up Eclipse with collaborative tools. Eclipse Technology
Exchange Workshop at ACM OOPSLA (Oct. 2003).

5. TightVNC: see http://www.tightvnc.com.

6. VNC: see http//www.realvne.com/docs/rfbproto. pdf.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

LI-TE CHENG is a research scientist in the Collaborative
User Experience group at IBM Research. He is cur-
rently working on the Jazz project, and has interests in
human computer interaction, mobile computing, and
augmented reality. His background is in computer vision,
graphics, image processing, artificial intelligence, and
software design. Cheng holds a Ph.D. in electrical engi-
neering from the Multimedia Communications Labora-
tory at Memorial University of Newfoundiand.
CLEIDSON R. B. DE SOUZA is a Ph.D. student in the
Interactive and Collaborative Technologies group in

50 December/january 2003-2004 QUEUE

the School of Information and Computer Science at the
University of California, Irvine, with research interests

in the field of computer-supported cooperative work

as it applies to software engineering. His focus is on
understanding how software engineers work together to
develop software, what problems they encounter during
their daily work, and what tools can help. Cleidson is on
leave-of-absence from the Department of Informatics at
Federal University of Para, Brazil, where he is a faculty
member, and holds an M.S. in computer science from the
University of California, irvine, and from the Institute of
Computing at University of Campinas, Brazil.

SUSANNE HUPFER is a research engineer working on
Jazz in IBM Research’s Collaborative User Experience
group. Before joining IBM, she cofounded a technology
spinoff of Yale University based on Lifestreams, a system
pioneering one of the first alternatives to the desktop
metaphor. Her interests include novel software architec-
tures and interfaces for information management and
collaboration, and distributed systems. She holds a Ph.D.
in computer science from Yale University, where she
focused on loosely coupled distributed programming and
software for coordination. Hupfer coauthored JavaSpaces
Principles, Patterns, and Practice (Addison-Wesley, 1999).
JOHN PATTERSON is a distinguished engineer in the
Collaborative User Experience group at IBM Research. His
research at Lotus/IBM has embraced a range of group-
ware projects, including an Internet-based state syn-
chronization capability for synchronous groupware and
alternate visualizations for Lotus Notes. He is currently
directing the Jazz project, introducing collaborative tool-
ing into the Eclipse application development environ-
ment in an effort to understand contextual collaboration
and the componentry needed to enable it. Patterson
received his Ph.D. in experimental psychology from the
University of Michigan and has held research and devel-
opment positions at Decisions & Designs, Bell Laborato-
ries, Bellcore, and SunSoft.

STEVEN ROSS is a senior technical staff member in the
Collaborative User Experience group at IBM Research.
Prior to his work on Jazz, he was chief architect of a
project that used speech recognition and synthesis
technology to develop a conversational user interface.
He also spent many years as an architect on the Lotus
1-2-3 spreadsheet. He was a founder of Reasonix, where
he worked on a highly optimizing Fortran compiler and
a mixed initiative expert system, and a software engineer
at Verbex. Ross has $.M. and S.B. degrees in computer
science from MIT.

© 2003 ACM 1542-7730/03/1200 $5.00

rants: feedback@acmqueue.com

