ADD CONSULTING INC.

SOFTWARE DESIGN
DOCUMENT

ONLINE WORK ORDER REQUEST SYSTEM

Asif Baksh
TwiSTedFuSion@aol.com
Denny Singh
suprazrule@yahoo.com
Damian Z Shameer
Yankeey2g@msn.com

Software Design Document v2

May 5, 2004 - Spring 2004
TABLE OF CONTENTS

Project ADSTIACT.....ciitiiiiiiicte ettt st et n e 03
DiStrIDUTION INOTES. ...ttt eee et enae e ees e eeeeen. 04
Document Revision HISTOIY........ccooviririnieiiiiiice ettt 04
PULPOSE. ...ttt e 04
Short DESCIIPUON. ...ttt ettt 04
Target AUICNCE. ...ttt 04
SPECIfICation FLOW......c.cuiueiiiiiiieieiiiiieeeeeeee e 05
Introduction — REQUIFEMENT....c.c.eururiiiieieieieiie sttt eeee e 05
Introduction — SOIUTION....c...civriirriieieite e e et 05
REfEICIICES. ...ttt ettt 06
LUMITATIONS. ..ottt se et eeeeeeeeeaenenes 07
System Metaphor..........cccccevvimiiniiinieeceeeecte et 07
SYSTEIM ATCHITECTUIE. .c.veuiiiiiietieieie ettt et e e e et eereee s era s 09
TEVATIANTS. ..ottt en e ee et een e 11
Features.. ..o 12
System AlGOrItHITIS.coeueuiiiieiiiiiiecieie e 14
System Database Architecture......ocoooueiivioiiiicecc e 20
GLOSSATY ...ttt e, 27

SOFTWARE DESIGN DOCUMENT

ONLINE WORK ORDER REQUEST SYSTEM
PROJECT ABSTRACT

The O.L.W.O.R System will allow residents living in Pace NYC residential halls to place work order

request via an online application. This online system will make the system of submitting work orders

easy and simple for residents living on campus. Campus Housing Staff members will be able to use the

online system to track and manage all incoming work order request. The new system will provide a
simple and efficient way for residents and staff members to handle work order requests.

DISTRIBUTION NOTES:

Reviewer List:

C Scharff, Software Engineering, Pace University
Distribution List:

Michelle Perez, Campus Housing, Director of Housing

Diane White, Campus Housing Operations

DOCUMENT REVISION HISTORY

File Name OLWOR System
Revision Date Author(s) Revision Notes
1.0 04/05/04 Denny Sign Initial draft version
Asif Baksh
Zulfikar (Damian) Shameer
2.0 05/05/04 Zulfikar (Damian) Second Review
Shameer
PURPOSE

This document describes a functional design solution to a particular problem as identified by a
requirements specification. This document, the design specification, is a living document that reflects
changes to the project. These changes generally take the form of issues that are unclear initially but
become resolved after further research or experience (use the Issues section as appropriate).

SHORT DESCRIPTION

The world is evolving everyday. Technology is constantly changing, allowing systems to be created
with powerful and robust functionalities. The O.L.W.O.R System will seek to take advantage of these
emerging technologies, especially web-based technologies, to assist improve processes and procedures
by Pace’s Campus Housing. With the O.L.W.O.R System, Campus Housing will have the ability to
eliminate a major portion of their paper-based and time consuming processes by taking advantage of
automated procedures, easy work order requests management, and useful reporting,

Some of the main functions of the O.L.W.O.R System include-
* Online, updatable profiles for residents

* Resident and Staff’s ability to submit work orders request online

o Staff can update work order request status
e Staff can manage residential halls

e Director of Housing can grant and revoke access to the system

TARGET AUDIENCE

This document is used by a variety of entities. Certainly, the key audience is Development. However,
Marketing, Support, and Training will also refer to this document both to guide their activities as well
as to check that all is in accordance with their understanding of the project as a whole. Only rarely are
customers directly involved with this document. Customers generally are asked to review the
methodology specification, which has some dependence on this document.

SPECIFICATION FLOW

The design specification is finalized after the requirements specification is approved and should
generally be developed and reviewed in parallel with the methodology specification to ensure the two
are in synch. The design specification is the core document for the project and is always written. A
particularly large development effort may have a set of functional specifications.

INTRODUCTION - REQUIREMENTS

The idea behind the development of the Online Work Order Request System is to provide a solution
to the difficulty of submitting work orders. Currently, residents must fill out written forms and hand
them in to campus housing managers without any work order updates or completion status.
Furthermore, there isn’t much of a procedure in place to submit work orders. Since the resident is
unaware of the progress of a submitted work order, it is not feasible or efficient to submit work order
request manually. Another issue associated with manually submitting work orders is that the process
is time consuming and tedious, for campus housing managers must keep track of all paper work
orders. The development of Online Work Order Request System is in the hope that it will provide a
solution for the following requirements:

1. The resident should be able to submit work orders quickly: currently, resident must
fill out paper form or speak to CHO Staff directly.

2. The resident should be able to change, update, and/or modify his or her profile which
is required to use the system.

3. The resident should be able to view past work orders.

4. CHO Staff should be able to view work orders, update status of submitted work
orders, and forward work orders to specified department(s).

5. DOH administration should be able to do all of the functionality of CHO Staff as well
as add, remove, and edit, users (CHO Staff included) of the system.

Also, the Online Work Order Request System should provide solutions to the requirements
that existing products satisfy:

6. The user should be able to access web pages with the browser frame: All browser
products provide the functionality of being able to access web pages from the World

Wide Web (WWW). B
INTRODUCTION - SOLUTION

The fundamental solution to the problem is to provide the resident with the ability to login to the
system with a user name and password to submit work orders. CHO Staff and DOH would have the
ability to efficiently keep track of submitted work orders and update the progress of each; thereby,
providing a fast and efficient process for submitting work orders and obtaining a response. The
current process does not allow the resident or managers to retrieve completion status of submitted
work orders. By providing a database for submitted work orders, the resident, CHO Staff, and DOH

can simultaneously access the system to submit, view, and update work orders.

With the proposed methodology, the user can access the information using World Wide Web browsers
which means that a most users with a computer will not have compatibility issues with the software.
The resident will already be provided with a user name and initial password which can be changed
along with other profile information such as building location, contact information, email address, and
class standing.

REFERENCES

Please refer to the following list of relevant documentations:
Feasibility Study
Software Requirement Specification
All documents can be found on the ADD’s website
http://matrix.csis.pace.edu:18387/pace/classpage/index.htm

Software Design Document Template

Computer Science, Berkeley College

http://www-inst.eecs.berkeley.edu/ ~ cs169/downloads/templates/design-spec-v3.doc

LIMITATIONS

The resident will not be able to delete and/or modify any existing submitted work orders. The
resident will not be able to change his or her user name. Only residents with valid Pace University
email addresses will be allowed access to the system. Work order completion status depends on
University department. Residents will not be able to access the system during off-hours. CHO Staff
will not be able to add or modify users to the system (only DOH has this ability). The initial release
of the system will not allow resident to send feedback after a work order has been completed.

SYSTEM METAPHOR

The overall structure of the system closely follows the Object Oriented: Call and Return architecture
type. The system will be three ticred, each tier only interacting with the module directly above or
below it. On the top level we have the GUI, below that is the middle tier, and at the lowest level we
have the database. The GUI handles all user interaction and will be primarily an event driven system.
The Database will be built as a shared repository, where the data exists in one location, and can be
accessed or modified with commands from the middle tier. The GUI and the Database are held
together by the middle tier, whose call and return structure brings the whole architecture together and
gives it its shape. It completely abstracts all knowledge of the Database from the GUI, and all
knowledge of the GUI from the Database. The Database only knows that when it wants data, it sends
a request to the middle tier and receives the required document for display. The Database does not
know that the GUI needs to display HTML documents; it merely returns the result from a SQL query
and knows nothing of formatting requirements.

S \\
/ .
7 .
/ ~
y AN
4 ™,
/
P \
\\
e [N /'v - BN
(Request state chage or data (submit work order)/\, \ HTML Document)
. \\, //
- ~. T I
e
. s
\\\ //
o p
. e
N e
d
Middle tier
TR
P e .
e .
7 AN
L
e \
AN

/ “

////
L - -
. SQL return

G?equest state chage or data (submit work order))

(Database)

Figure 1. This illustrates the overall architecture of the software. UML diagram was created with MS
Visio 2002.

SYSTEM ARCHITECTURE

H -

] {Add, modify, or delete user} J

— ’\ P
* N e d

{Update user information} J
|
!
|

//
MSdify Profia
@odify database: Add, remove, update stat@ @emove work order from databa_sg
~ — /////,.
~— _ - -

7

(Get work order from Databasath/ Ve ™~

Figure 2

This figure shows basic structure of the GUI interface. It illustrates the event driven
architecture behind the GUIL. UML diagram was created with MS Visio 2002

GUl Interface

AR

VAN
// ///\ [
J P ,\\.\
/ / / | AN

\ \

\‘\\

\\

(Y

///‘\'

e

\ \,
) / l \ \
/ / L \ ‘
e / / \ N
e / / { \ \
s/ / \
/ /
e P \
/ // / \
/
/ / \
Change status / Add, M dify Remove/(Nork Submit Work 6 der \ Update Rrofite
/ / Order
A / N
WO;g :’J:er Status result Database Return Request Return infol:rs;uzrtion Status result
updated to html updated Status stored Status modified to html
155 r =
AN /1{ . 7 /
. . \\\ k ‘,f‘/ /"
\\\ \\\ \ “/‘/ 'v , / //_
/ / -
N \ 10 / / J/
\ \ !’ / // /
\\ ~ N N\ “ ‘ / / / S //
A h \ \ / / / /
A N \ {

Figure 3. This shows the call and return structure of the middle tier that determines the over all
system architecture. Within the middle tier structure you can see both the input action and
output action for each command. UML diagram was created with MS Visio 2002.

INVARIANTS

GUI Invariants:
¢ Windows always remain accessible. At no point will a window that should be
displayed on the screen be resized to the point they can no longer be accessed.
¢ Confirmation of submit request, profile modification, add, remove, or change
work order status will be displayed.
Middle Tier Invariants:
e Must respond to all requests, and pass them along appropriately to the
database.
o Will always return the proper HTML file to the GUI, and will give a properly
formatted document for the work order display and submission.
Database Invariants:
e Maintain the database from one use to another.
e Database must never be corrupted. Must always contain proper data
e Ifauser request is not in the database return appropriate error.

11

e o

FEATURES

(Report User does not exist){i
N

(Form data invalid or missingﬁ«; -
.

I
LReport Error to Useb
S

Work Order

N/

(Submit Requesg

o \> s - ?j\(Submit request successful)

(Process Datase Return to HTMD

Figure 4. The Login and Work Order Submit process. UML diagram was created with MS Visio

2002.

1.1 Features - Compatibility

The greatest compatibility concerns stem from the sharing of the Internet Explorer
component used for web browsing. Further compatibility issues arise when one considers that
HTML is a protocol that is an ever-changing and ever-growing standard. For this reason,
updates to web browsers are common, and given that we’ve implemented a browser control,
our program will sometimes be used on a computer with an older HTML parsing engine. This
could result in failures to properly load and display documents. The user also might have to
download security updates and such for the IE component on their computer.

Another compatibility issue of building the Online Work Order Request System on top of a
browser is that the web documents often contain components that already have behaviors of
their own, especially those documents that include scripts. Clicks on a hyperlink might mean
navigation is intended and they might not. Even with careful planning and design, there is still
potential to confuse a user who might be expecting the wrong behavior from an event.

With the benefit of some user-friendly FAQ retrievable from the menu toolbar, the least
proficient home computer users will be able to use the system.

1.2 Features - User Interface

The Online Work Order Request System will have one main window for user interaction.

Main features will be the following:

13

L. User login (CHO Staff, DOH, and resident access types are different).
2. Resident access:
* Submit work order
* Update information within profile
o Check status of work order
3. CHO Staff access:
e Add new work order
* Change status of work order
4. DOH access:
* Access includes all feature a resident and CHO Staff has
* Add new CHO Staff Profile (grant access)
* Remove CHO Staff Profile (revoke access)

Login:

Residents will be allowed to login with there user name and password when they access the
site.. CHO Staff and the DOH will be able to click on a separate link to login.

Profile view:

Residents will be allowed to update their profile and change passwords by clicking a link to
another HTML page. When the resident is finished modifying profile information, they have
the option to “save” profile.

Work order submit form:

The work order form will resemble the paper-based form. The resident’s profile information
will already be filled out on the form. The resident would be able to type in the request and
click send for submission.

Work orders:

Upon login, CHO and DOH managers will be able to view a sorted list (according to ID
number) of work order. This list can be sorted by resident user, date, or status.

SYSTEM ALGORITHMS

Before a resident can submit a work order online, he/she must be registered with the system. In
the registration stage, the resident must provide all the necessary information, such as First
Name, Last Name, Pace issued email Address, a password, residential hall, etc. Once the
resident completes the registration form, he/she then submits the form to the system.

The system will then process the data which the resident has entered. The processing is done is

14

several stages:

1.

Before the resident submits the HTML form with his/her data, JavaScript is used to
validate the data. The JavaScript will be checked that the all required information is
provided. The following information will be collected: All data listed, unless otherwise

noted, is required for registering.

e N

First Name

Last Name

Pace ID Number (SS#)

Pace issued email address (the User ID)
A password

Residential Hall

Residential Hall room number

Room telephone number

Cellular telephone number (optional)

2. Once the JavaScript validates all the input, the data is submitted to the system for
processing.

3. To insure that a resident does not try to register twice, the system will check if the resident
already exists in the system. The system will check is the resident’s email address already
exist in the system

ooen o

f.

A connection to the database is established

An SQL Statement object is created.

An SQL query is formatted with the resident email address

The SQL query is executed against the database

If the system finds that the resident’s email address already exists in the database, a
message will be provided stating that a profile already exists.

If the system does not find the email address, a new resident profile will be created.

4. Adding the new profile to the system will be handled by a Java Servlet,
ResidentCreateProfile.

The Servlet will collect all the data items and store them in the CreateResProfile

a.
class’s instance variables. Once the data is collected, the next step is accessing the
database and saving the data.

b. A connection to the database is established

c. An SQL Statement object is created.

d. An SQL query is formatted with the resident’s profile information and the query is

executed. The query will be executed via a JDBC Transaction

L. If the SQL query does not execute successfully for any reason, then the
database will not be updated - the state of the database will not change. The
system will call the rollback method to preserve a stablé state of the
database

ii. If the query is executed successfully, then the data is saved in the system
permanently. The system will call the commit method to make the new
data permanent in the system

15

5. A profile is created in system. The system will provide the user with a confirmation that
he/she now has access to the online system. A message will also be provided stating the user
should save to save his/her user id (his/her Pace email address) and his/her password and
proceed to the system’s login page

The online system is restricted on only authorized users. Before a resident can access the
system and all it’s features, he/she must login with his/her User ID and Password, which they
submitted when creating their profile (see algorithm #1).

The following is the procedure for a resident login into the system
Reference Algorithms: A1
1. The resident visits the Resident’s Login page of the system

2. The resident enter his/her User ID and password and then proceeds to login
a. JavaScript is used ensure the resident enters his/her User ID and password. The
resident will not be allowed to proceeded if he/she does not enter both his/her
User ID and password
3. The resident submits his/her User ID and password to the system for verification

4. The system will then process in the incoming data from the resident. Login to the system
will be handled a Servlet, ResidentLogin. The Servlet will process the login as follows:
a. The resident’s User ID and password is collected from the resident and saved in the
Servlet class instance variables.
A global connection to the database is established
An SQL Statement object is created.
An SQL query is formatted with the resident’s User ID and password
The SQL query is executed against the database to check if the submitted User ID
and Password is correct.

o opo o

5. Once the SQL query is executed against the database, the database will return the results to
the Servlet. The SQL query will return a result which can be evaluated in 2 possible ways:

a. The resident’s User ID was not found in system. This means that the resident does not
have a profile on the system. The message will be provided to the resident that
he/she does not have a profile and should register. This output also means that the
resident might have entered this User ID incorrectly. The system will provide a
message stating the submitted resident’s User ID was not found in the system

b. The resident’s password is invalid. In this scenario, the resident’s User ID is valid
but the password is invalid. The system will notify the resident that his/her
password does not match the password entered when creating his/her profile.

16

6. If the resident’s User ID and password is verified
a. A Session object is created to store the resident’s User ID

7. The system will then forward the resident to the appropriate web page.

3:ResidentUpdateProfile

A main feature of OLWOR System is that a resident should be able to update his/her profile

at any given time. This operation is necessary since it’s possible that a resident may change
his/her living location and personal information during the school year. The resident will also
be able to update certain information in his/her profile. The resident will also be allowed to
update:

Password

Residential Hall

Residential Hall room number

Room telephone number

Cellular telephone number (optional)

o a0 o

The following is the procedure a resident updating his/her profile
Reference Algorithms: A1, A2

1. Resident logs into the system with his/her User ID and password
2. Resident Clicks on a link to update profile

3. The resident’s exiting profile is read from the database and populates HTML form.
Populating the HTML form with data from a database is handled with a JSP page.
A global connection is made to the system’s database

An SQL Statement object is created

An SQL query is created and formatted with the User ID taken from the Session
object (created when the resident logged in).

e. The SQL query is executed against the database.

f. The data is then read into the HTML form.

an o

4. The resident then updates the his/her profile and submits the HTML form to the database
a. JavaScript is used to validate the data entered the resident
b. The resident is required to supplied all the required information

5. Updating the resident’s profile in the system’s database is handled by a Servlet,
Resident UpdateProfile. The resident’s profile will be updated as follow:
a. Data from the HTML form with be collected and saved in the Servlet’s class
instance variables
b. A SQL Statement object is created
¢. AnSQL query is create and formatted with the resident’s information collected to
update Resident’s Table in the database

17

d. An SQL query is executed. The query will be executed via a JDBC Transaction

1. If the SQL query does not execute successfully for any reason, then the
database will not be updated - the state of the database will not change.
The system will call the rollback method to preserve a stable state of the
database

i If the query is executed successfully, then the data is saved in the system
permanently. The system will call the commit method to make the change
permanent in the system

6. A message is provided to the resident stating his/her profile has been updated.

Algorithm Name | A4-ResidentSubmitWork

This is a key operatlon of the online system. Once a Remdent is logged in, he/ she can subrmt a
work order request via the system. The resident is required to complete a simple HTML form
with a descnptmn of the work request and then submit the request to the new system. Once
the request is submitted to the system,

Reference Algorithms: A1, A2

The following is the procedure for a resident to submit a work order request
1. Resident logs in to the system

2. Resident clicks on a link to submit a new work order request

3. Resident completes a simple HTML form with the required fields
Resident’s First & Last Name
Residential Hall and Room #
Email address
Room Telephone number
Cellular telephone number
Work Request Type
1. DolT

ii. B&G

. S&S

tv. CoinMac
g. A full description of the work to be done.

e oo o

4. The resident then submits the HTML form to the system for processing
a. JavaScript is used to validate the resident’s data
b. The system will not allow the resident to submit an incomplete request. All the
required data must be provided

5. The work order request is submitted to the system and saved

18

6. Saving the work order request will be handled by a Java Servlet, ResidentWorkRequest. The
procedure for saving the work order request 1s follows
a.

PR o

j

A new work order request has been successfully submitted]

The Servlet collects all the data from the HTML form and save it in Servlet’s class

instance variables

A connection to the database is made

A SQL Statement object is created

An SQL query is create and formatted with the work order request information

An SQL query is executed to save the new work order request in the system. The

query is executed via a JDBC Transaction

1. If the SQL query does not execute successfully for any reason, then the

database will not be updated - the state of the database will not change.
The system will call the rollback method to preserve a stable state of the
database. The work order request will not be added to the system. The
resident will be provided with a message of the error.

. If the query is executed successtully, then the new request is saved in the
system permanently. The system will call the commit method to make the
change permanent in the system.

ii. Once the request is saved in the system’s database, the system will return a
unique Work Order Request 1D (WORID) that so that the student can
check the status of the work order at 2 later time

Once the request has been saved in the database, the system will compile an email
message to send to the resident and CHO Staff notifying them about the new
work order
The email message will contain the following information:

i The entire work order request, as submitted by the resident

it. The resident’s personal information
Since personal information about the resident is already saved in the system, the
system did not ask the resident to submit his information why submitting his/her
work order request. The system will generate the email message using data which
was submitted and data from the database
Collecting the Resident’s information

L. An SQL query is created and formatted with the Resident’s User ID

(captured from the Session object) to query the database
ii. The SQL query is executed and the resident’s data is saved for the email
message
Sending email
L. Once all the necessary data has be collected, compile the email message and
send email to resident and CHO Staff member

This is another key feature

" 5-ResidentCheckRequestStatus - S T TR T
of the system. Once a work order request has been submitted, a

19

resident can check the status of the work order’s status. To do so, the resident will need the
Work Order Request ID given after the work order was submitted. This is the only information
required to check the status of a work order. The work order will have 3 possible statuses:

1. InProgress

2. Completed

3. Rejected
The status of the work order will be updated with the CHO Staff Members.

The algorithm for checking the status of a submitted work order request is as follows:
Reference Algorithms: A1, A2, A4

1. Resident logs in to the system

2. Resident requests the page for checking the status of the work order request

3. Resident enters the WORID given after he/she submitted the work order request

4. Checking the status of the request will be handled by a JSP page, ResidentCheck
RequestStatus.

d.

b,

C.

d.

The JSP page will capture the WORID which the resident has entered
A connection to the database is made ,
An SQL query is created and formatted with the WORID to query the Work
Order Request table in the database.
The result is saved in a Boolean variable
If the Boolean variable is true:
i. The request was found in the database
i The entire request will be printed on the screen for the resident’s view,
along with the status of the request
If the Boolean variable is false:
i The request was not found in the system. This means either the request
was never filed or the resident entered an incorrect WORID
1. A message will be printed to the resident stating request not found.

20

SYSTEM DATABASE ARCHITECTURE

dents -
E

RES ID VARCHAR(50) NOT NULL,

CR ATE TABLE‘R‘esi‘dent‘s (|

Password VARCHAR(20) NULL,
First Name ~ VARCHAR(50) NOT NULL,
Last_Name VARCHAR(50) NOT NULL,

Res Hall ID INTEGER NOT NULL,

Pace StuID INTEGER NOT NULL,

Room Number VARCHAR(20) NULL,

Tele_Extension ~ VARCHAR(20) NULL,

Celluar Number ~ VARCHAR(30) NULL,
);

ALTER TABLE Residents ADD (PRIMARY KEY (RES_ID));

ALTER TABLE Residents ADD (FOREIGN KEY (Res Hall ID)
REFERENCES ResidentHalls) ;

DATA TYPE Comment
RES ID VARCHAR, The Resident’s ID will be a Pace issued email address — with
NOT NULL domain “pace.edu.” The email address will also be the primary
key for the Resident’s table in the system since each email

21

);

Res_Hall Name
Res_Hall Location VARCHAR(30) Not NULL,

issued by page is unique to only 1 student. The email field is
required.
Password VARCHAR, The password will be alphanumeric with a maximum length 20
NOT NULL characters and minimum length of 6

First Name VARCHAR, Resident’s first name is required by the system. This field is
NOT NULL required

Last Name VARCHAR, Resident’s first last is required by the system. This field is
NOT NULL required

Res Hall ID INTEGER The resident’s living location, Res_Hall ID, will be joined to
ResidentHalls table. Res_Hall ID will be the foreign key of
this table

Pace Stu ID INTEGER, Pace_Stu_ID will be the residents Social Security number. This

NOT NULL field is required

Room_Number | VARCHAR Room_Number is the resident’s room number in his/her
respective residential hall

Tele Extension | VARCHAR Tele_Extension is the resident’s room telephone in his/her
respective residential room.

Celluar Number | INTEGER Cellular_Number will be the resident’s cellular phone number
incase his/her room telephone number is not working. This
field is not required

TableName = [ResidentHalls i

SQL Code CREATE TABLE RemdentH Ils (

Res Hall ID INTEGER NOT NULL AUTO_INCREMENT,

varCHAR(30) Not NULL,

ALTER TABLE ResidentHalls .
ADD (PRIMARY KEY (Res Hall ID));

| DATATYPE

NAME Comment
Res Hall ID INTEGER, When a new residential hall added to this table, a new,
NOT NULL unique ID will be given to the record. Res Hall ID
will be primary key for this table.
Res Hall Name VARCHAR, The residential hall must have a name, for example,
NOT NULL “Maria’s Tower 2.” The data will be used to populate
HTML form its. This field is required.
Res Hall Location VARCHAR, The location of the hall.
NOT NULL
: ofil ors Profiles)
SQL Code CREATE TABLE RAProfile (

22

RAID

RA First Name
RA_Last Name
RA Email
RA_Telephone

INTEGER NOT NULL AUTO _INCREMENT,
VARCHAR(50) NOT NULL,
VARCHAR(50) NOT NULL,

VARCHAR(30) NOT NULL,
VARCHAR(20) NULL

);
ALTER TABLE RAProfile
ADD (PRIMARY KEY (RAID))
DATA TYPE Comment
INTEGER, When a new RA is added to this table, a new, unique ID
NOT NULL will be given to the record. RAID will be primary key
for this table.

RA_First Name VARCHAR, First name of the RA. This field is required with a
NOT NULL maximum of 50 characters

RA Last Name VARCHAR, Last name of the RA. This field is required with a
NOT NULL maximum of 50 characters

RA Email VARCHAR, Email address of the RA. This field is required with a
NOT NULL maximum of 30 characters

RA_Telephone VARCHAR, The RA’s telephone. This field is not required
NULL

Table Name

RHCProfiles (Residential Hall Coordinators Profiles) |

SQL Code

RCHID

RCH_First Name
RCH_Last Name
RCH_Email
RCH_Telephone

);

| CREATE TABLE RHCProfiles (

INTEGER NOT NULL AUTO INCREMENT,
VARCHAR2(50) NOT NULL,
VARCHAR2(50) NOT NULL,

VARCHAR2(30) NOT NULL,

VARCHAR2(30) NULL

ALTER TABLE RHCProfiles

_ADD (PRIMARY KEY (RCHID))

NAME DATA TYPE Comment
RCHID INTEGER, When a new RCH is added to this table, a new, unique
NOT NULL ID will be given to the record. RCHID will be primary
key for this table.
RCH_First Name VARCHAR, First name of the RCH. This field is required with a
NOT NULL maximum of 50 characters
RCH Last Name VARCHAR, Last name of the RCH. This field is required with a

23

NOT NULL maximum of 50 characters

RCH Email

VARCHAR, Email address of the RA. This field is required with a
NOT NULL maximum of 30 characters

RCH_Telephone

VARCHAR, The RA’s telephone. This field is not required
NULL

_Table Name =~

SQL Code

/* Each building will have an RA. This table is populating by selecting a
Residential Hall and an RA from the RA Profile table*/

CREATE TABLE BuildingR Advisors (
Res Hall ID INTEGER NOT NULL,
RAID INTEGER NOT NULL

)i

ALTER TABLE BuildingR Advisors
ADD (PRIMARY KEY (Res Hall ID, RAID));

ALTER TABLE BuildingR Advisors
ADD (FORFIGN KEY (RAID)
REFERENCES RAProfile) ;

ALTER TABLE BuildingR Advisors
ADD (FOREIGN KEY (Res Hall ID)

Description

REFERENCES ResidentHalls) ;

NAME

DATA TYPE Comiﬁent -

Res Hall ID

INTEGER, Res Hall ID is pulled from the Residential Hall table.
NOT NULL This will be both a primary key and a foreign key

RAID

NTEGER, RAID s pulled from the RAProfile table. This will be
NOT NULL both a primary key and a foreign key

‘Table Name

SQL Code

/* Each building will have an RCH. This table is populating by selecting a
Residential Hall and an RCH from the RHCProfiles table*/

CREATE TABLE BuildingRHCord (
Res Hall ID INTEGER NOT NULL,
RCHID INTEGER NOT NULL

)

24

ALTER TABLE BuildingRHCord
ADD (PRIMARY KEY (Res Hall ID, RCHID)) ;

ALTER TABLE BuildingRHCord
ADD (FOREIGN KEY (RCHID)
REFERENCES RHCProfiles) ;

ALTER TABLE BuildingRHCord
ADD (FOREIGN KEY (Res_Hall ID)
REFERENCES ResidentHalls) ;

NAME DATA TYPE Comment

Res_Hall ID INTEGER, Res Hall ID is pulled from the Residential Hall table.
NOT NULL This will be both a primary key and a foreign key

RCHID NTEGER, RCHID is pulled from the RHCProfiles table. This will
NOT NULL be both a primary key and a foreign key

Tal

SQL Code

/* This table will store information for both CHO Staff and DOH. */

CREATE TABLE CHOStaff (
CHOID INTEGER NOT NULL AUTO_INCREMENT,
CHO First Name ~ VARCHAR(50) NOT NULL,
CHO_Last_Name VARCHAR(50) NOT NULL,
Email Address ~ VARCHAR(30) NOT NULL,
Password VARCHAR(20) NOT NULL,
Access Level INTEGER NOT NULL,
Last Edit Date DATE NULL

)

ALTER TABLE CHOStaff
ADD (PRIMARY KEY (CHOID)) ;

DATA TYPE T ‘Comment

INTEGER, When a new Staff member is added to this table, a new,

25

NOT NULL unique ID will be given to the record. CHOID will be
primary key for this table.
CHO _First Name VARCHAR Staff’s first name. This field is required
NOT NULL
CHO_Last Name VARCHAR Staff’s last name. This field is required
NOT NULL
Email Address VARCHAR Staff’s email address. This field is required
NOT NULL
Password VARCHAR Password will be alpha numeric with a maximum of 20
NOT NULL characters
Access_Level INTEGER There will be 3 levels of access. By default, residents will
NOT NULL be level "1°, the lowest possible access. The next level
will ne
Last Edit Date DATE If the Staff profile was updated, capture the date of
update

Types s TR s
ith hold the different types of work request, such as B&G,
S&S, DolT, CoinMac. If the Staff adds a new work request type, the data
will be stored here. The data in this table is also used for populating the
Work Order Submit page - The Request types are dynamically read into

the HTML form */

CREATE TABLE WorkRequestTypes (
ReqType ID INTEGER NOT NULL AUTO INCREMENT,
Work Type Name VARCHAR(50) Not NULL,
Work Type Description VARCHAR(1000) NULL,
Work_Type Contact VARCHAR(30) NULL,
Send Request to VARCHAR(30) NULL

);

ALTER TABLE WorkRequestTypes
ADD (PRIMARY KEY (Work Request Type ID));

AME DATA TYPE Comment
ReqType ID INTEGER, When a new Work Request Type is added to this table, a
NOT NULL new, unique ID will be given to the record. ReqType ID
will be primary key for this table.
Work Type Name VARCHAR The name of the request. For example, Dol T
NOT NULL
Work Type VARCHAR A description of work type. For example, DoIT work

26

Description NULL orders relate to LAN issues, Ethernet problems, etc. The
maximum number of characters allowed for this field is

1000.
Work Type Contact VARCHAR The contact for the work type
NULL
Send_Request_to INTEGER This field will determine which Staff member will

NOT NULL recetve work orders of this type.

ame | WorkOpders
e

d

SQL Co
/* All work orders will be saved in this table. The table has several foreign
keys to other tables. */

CREATE TABLE WorkOrders (
Work_Order ID VARCHAR(100) NOT NULL,
WOR_SubmitDate DATE NOT NULL,
WOR Description ~ VARCHAR(3000) NOT NULL,
RES ID INTEGER NOT NULL,
CHOID INTEGER NOT NULL,
Res Hall ID INTEGER NOT NULL,
ReqType_ID INTEGER NOT NULL,
Submitted by VARCHAR(20) NOT NULL,
Work_Order_Status VARCHAR(35) NOT NULL,
Last Edit Date DATE NULL

);
ALTER TABLE WorkOrders ‘
ADD (PRIMARY KEY (Work Order ID));
ALTER TABLE WorkOrders
ADD (FOREIGN KEY (ReqType_ID)
REFERENCES WorkRequestTypes) ;
ALTER TABLE WorkOrders
ADD (FOREIGN KEY (Res_Hall ID)
REFERENCES ResidentHalls) ;
ALTER TABLE WorkOrders
ADD (FOREIGN KEY (CHOID)
REFERENCES CHOSaff) ;

ALTER TABLE RES_ID
ADD (FOREIGN KEY (RES ID)

27

REFERENCES Residents) ;

DATA TYPE

Comment

Work Order ID VARCHAR NOT
NULL
WOR_SubmitDate | Date NOT NULL | The date the work order was submitted. This field is
required
WOR_Description | VARCHAR NOT | A description of work order. This field is required. A
NULL maximum of 3000 characters is accepted for this field
RES ID Integer NOT The Resident’s id. This field is required and a foreign
NULL key in this table. All info about the resident can be
captured with his/id
CHOID Integer NULL This field will be modified when a CHO updates the
status of work order. The Staff ID will be added to
reflect the change. This field is required and a foreign
key in this table
Res Hall ID INTEGER NOT The residential hall where the work has to be done.
NULL This field is required and a foreign key in this table
ReqType ID DATE The type of work order request. This field is required
and a foreign key in this table
Submitted by VARCHAR NOT | A work order can be submitted by either a staff
NULL member or resident. This field will accept only two
possible inputs (By Resident, By Staff).
Work Order_Status | VARCHAR NOT | The work order status. The status can be either ‘In
NULL Progress’, ‘Completed’ or ‘Rejected’. This field is

required

Last Edit Date

The last time a request was edited or updated

28

CHO Atdf
DOH

GUI
Front/First Tier
Middle Tier
Third Tier

Invariant

Profile

GLOSSARY

= Campus Housing Operations Staff members

= Diurector of Housing,

= Graphical User Interface.

= The user interface.

= Handles communication between the GUI interface and Database.
= The System’s Database

= An assertion that must be true both before and after the execution of
each operation.

= Information about each residents, and will contain full name,
residential hall, room number, contact information, ID number, and
class standing .

29

