Database S s\ﬁrmS
A\r\a&(}ppéfaéil - Wl miad
Appmcxgg

2™ e dion

Hichowl KL ) Aathun
The Big Picture Bernstewn, ' FPhilip /11

£

2.1 Case Study: A Student Registration System

Your university is interested in implementing a student registration system so that
students can register for courses from their home PCs. You have been asked to build
a prototype of that system as a project in this course. The registrar has prepared the
following preliminary Statement of Obijectives for the system.

The objectives of the Student Re

gistration System are to allow students and faculty
(as appropriate) to

Authenticate themselves as users of the system
Register and deregister for courses (offered for the next semester)
Obtain reports on a particular student’s status

Maintain information about students and courses

AdNLS ISVD

A o e

Enter final grades for courses that a student has completed

This brief description is typical of what mi
a system implementation project, but it is

as the basis for the project’s design and coding phases. We will be developing the
f student registration scenario throughout this book and will be using it to illustrate
the various concepts in databases and transaction processing.

Our next step is to meet with the r

ght be supplied as a starting point for
not specific or detailed enough to serve

appropriate times as you proceed through the rest of the book. In this chapte
take a closer look at some of the underly

Processing that are needed for that system.

The following sections provide a brief overview of these concepts. Although
We will revisit these concepts in a more detailed fashion in subsequent chapters,

an overview will help you see the big picture and will set the stage for better
. nderstanding of the following chapters.




14

CHAPTER 2 The Big Picture

2.2 Introduction to Relational Databases

A database is at the heart of most transaction processing systems. At every instant of
time, the database must contain an accurate description—often the only one-—of the
real-world enterprise the transaction processing system is modeling. For example,
in the Student Registration System the database is the only source of information
about which students have registered for each course.

Relations and tuples. We are particularly interested in databases that use the
relational model [Codd 1970, 1990], in which data is stored in tables. The Student
Registration System, for example, might include the STUDENT table, shown in
Figure 2.1. A table contains a set of rows. In the figure, each row contains information
about one student. Fach column of the table describes the student in a particular
way. In the example, the columns are Id, Name, Address, and Status. Each column
has an associated type, called its domain, from which the value in a particular row
for that column is drawn. For example, the domain for Id is integer and the domain
for Name is string.

This database model is called “relational” because it is based on the mathe-
matical concept of a relation. A mathematical relation captures the notion that
elements of different sets are related to one another. For example, John Doe, an ele-
ment of the set of all humans, is related to 123 Main St ., an element of the set of all
addresses, and to 111111111, an element of the set of all Ids. A relation is a set of tu-
ples. Following the example of the table STUDENT, we might define a relation called
STUDENT containing the tuple (111111111, John Doe, 123 Main St., Freshman).
The STUDENT relation presumably contains a tuple describing every student.

We can view a relation as a predicate. A predicate is a declarative statement
that is either true or false depending on the values of its arguments—for example,
the predicate “It rained in Detroit on date X” is either true or false depending on
the value chosen for the argument X. When we view a relation as a predicate,
the arguments of the predicate correspond to the elements of a tuple, and the
predicate is defined to be true for arguments 4, ..., a, exactly when the tuple
(ay, ..., ay) is in the relation. For instance, we might define the predicate STUDENT

Cl
111111111 | John Doe 123 Main St. Freshman
666666666 | Joseph Public | 666 Hollow Rd. Sophomore
111223344 | Mary Smith 1 Lake St. Freshman
987654321 | Bart Simpson Fox 5 TV Senior
023456789 | Homer Simpson | Fox 5 TV Senior
123454321 Joe Blow 6 Yard Ct. Junior

FIGURE 2.1 The table STUDENT. Each row describes a single student.

em
op
tak
rown
reg
loc:
tior
a m
que
rela

defi
ity,

prac
Cconv
mat]
exec



2.2 Introduction to Relational Databases

with arguments Id, Name, Address, and Status. Then we can say that the predicate
STUDENT (111111111, John Doe, 123 Main St., Freshman) is true, because the
tuple (111111111, John Doe, 123 Main St., Freshman) is in the table STUDENT
shown in Figure 2.1.

The correspondence between tables and relations should now be clear: the tuples
of a relation correspond to the rows of a table, and the column names of a table are
the names of the attributes of the relation. Thus, the rows of the STUDENT table can
be viewed as enumerating the set of all 4-tuples (tuples with four attributes of the
appropriate types) that satisfy the STUDENT relation (i.e., the Id, Name, Address, and
Status of a student).

Operations on tables are mathematically defined. In real applications, tables
can become quite large—a STUDENT table for our university would contain over
15 thousand rows, and each row would likely contain much more information about
each student than is shown here. In addition to the STUDENT table, the complete
database for the Student Registration System at our university would contain a
number of other tables, each with a large number of rows, containing information
about other aspects of student registration. For example, a TRANSCRIPT table might
contain a row for each course that every student has ever taken. Hence, the databases
for most applications contain a large amount of information and are generally held
in mass storage.

In most applications, the database is under the control of a database manage-

ment system (DBMS), which is supplied by a commercial vendor. When an applica-
tion wants to perform an operation on the database, it does so by making a request
to the DBMS. A typical operation might extract some information from the rows of
one or more tables, modify some rows, or add or delete rows. For example, when a
new student is admitted to the university, a row is added to the STUDENT table.
1 In addition to the fact that tables in the database can be modeled by math-
3 ematical relations, operations on the tables can also be modeled as mathematical
k. operations on the corresponding relations. Thus, a particular unary operation might
take a table, T, as an argument and produce a result table containing a subset of the
rows of T. For example, an instructor might want to display the roster of students
registered for a course. Such a request might involve scanning the TRANSCRIPT table,
locating the rows corresponding to the course, and returning them to the applica-
tion. A particular binary operation might take two tables as arguments and construct
a new table containing the union of the rows of the argument tables. A complex
query against a database might be equivalent to an expression involving many such
relational operations involving many tables.

Because of this mathematical description, relational operations can be precisely
defined and their mathematical properties, such as commutativity and associativ-
ity, can be proven. As we shall see, this mathematical description has important
Practical implications. Commercial DBMSs contain a query optimizer module that
-converts queties into expressions involving relational operations and then uses these

‘mathematical properties to simplify those expressions and thus optimize query
Xecution.




16

CHAPTER 2 The Big Picture

$QL: Basic SELECT statement. An application describes the access that it wants
the DBMS to perform on its behalf in a language supported by the DBMS. We are
particularly interested in SQL, the most commonly used database language, which
provides facilities for accessing a relational database and is supported by almost all
commercial DBMSs.

The basic structure of the SQL statements for manipulating data is straightfor-
ward and easy to understand. Each statement takes one or more tables as arguments
and produces a table as a result. For example, to find the name of the student whose
1d is 987654321, we might use the statement

SELECT Name
FROM STUDENT 2.1
WHERE Id = '987654321'

More precisely, this statement asks the DBMS to extract from the table named in
the FROM clause—that is, the table STUDENT—all rows satisfying the condition in
the WHERE clause—that is, all rows whose Id column has value 987654321—and
then from each such row to delete all columns except those named in the SELECT
clause—that is, Name. The resulting rows are placed in a result table produced by the
statement. In this case, because Ids are unique, at most one row of STUDENT can
satisfy the condition, and so the result of the statement is a table with one column
and at most one row.

Thus, the FROM clause identifies the table to be used as input, the WHERE clause
identifies the rows of that table from which the answer is to be generated, and the
SELECT clause identifies the columns of those rows that are to be output in the result
table.

The result table generated by this example contains only one column and at
most one row. As a somewhat more complex example, the statement

SELECT Id, Name
FROM STUDENT 2.2
WHERE Status = 'senior'

returns a result table (shown in Figure 2.2) containing two columns and multiple
rows: the Ids and names of all seniors. If we want to produce a table containing all
the columns of STUDENT but describing only seniors, we use the statement

SELECT =
FROM STUDENT
WHERE Status = 'senior'

UL % o R SR e R s SR




2.2 Introduction to Relational Databases

d Name
987654321 Bart Simpson
023456789 Homer Simpson

FIGURE 2.2 The database table returned by the SQL SELECT statement (2.2).

The asterisk is simply shorthand that allows us to avoid listing the names of all the
columns of STUDENT.

In some situations the user is interested not in outputting a result table but in
information about the result table. An example is the staternent

SELECT COUNT (%)
FROM STUDENT
WHERE Status = 'senior'

which returns the number of rows in the result table (i.e., the number of seniors).
COUNT is referred to as an aggregate function because it produces a value that is a
function of all the rows in the result table. Note that when an aggregate is used, the
SELECT statement produces a single value instead of a table.

The WHERE clause is the most interesting component of the SELECT statement;
it contains a general condition that is evaluated over each row of the table named
in the FROM clause. Column values from the row are substituted into the condition,
yielding an expression that has either a true or a false value. If the condition evaluates
to true, the row is retained for processing by the SELECT clause and then stored in
the result table. Hence, the WHERE clause acts as a filter.

Conditions can be much more complex than we have seen so far: A condition
can be a Boolean combination of terms. If we want the result table to contain
information describing seniors whose Ids are in a particular range, for example, we
might use

WHERE Status = 'senior' AND Id > '888888888'

OR and NOT can also be used. Furthermore, a number of predicates are provided in
the language for expressing particular relationships. For example, the IN predicate
tests set membership.

S ———————

WHERE Status IN ('freshman', 'sophomore')

Additional aggregates and predicates and the full complexity of the WHERE clause
re discussed in Chapter 5.




|
i
!
| |
i

18

CHAPTER 2 The Big Picture

Multi-table SELECT statements. The result table can contain information ex-
tracted from several base tables. Thus, if we have a table TRANSCRIPT with columns
StudId, CrsCode, Semester, and Grade, the statement

SELECT Name, CrsCode, Grade
FROM STUDENT, TRANSCRIPT
WHERE StudId = Id AND Status = 'senior'

can be used to form a result table in which each row contains the name of a senior,
a particular course she took, and the grade she received.

The first thing to note is that the attribute values in the result table come from
different base tables: Name comes from STUDENT; CrsCode and Grade come from
TRANSCRIPT. As in the previous examples, the FROM clause produces a table whose
rows are input to the WHERE clause. In this case the table is the Cartesian product
of the tables listed in the FROM clause: a row of this table is the concatenation of
a row of STUDENT and a row of TRANSCRIPT. Many of these rows make no sense.
For example, Bart Simpson’s rtow in STUDENT is not related to a row in TRANSCRIPT
describing a course that Bart did not take. The first conjunct of the WHERE clause
ensures that the rows of TRANSCRIPT for a particular student are associated with the
appropriate row of STUDENT by matching the Id values of the rows of the two tables.
For example, if TRANSCRIPT has a row (987654321, CS305, F1995, C), it will match
only Bart Simpson’s row in STUDENT, producing the row (Bart Simpson, 3305, C)
in the result table.

Query optimization. One very important feature of SQL is that the programmer
does not have to specify the algorithm the DBMS should use to satisfy a particular
query. For example, tables are frequently defined to include auxiliary data structures,
called indices, which make it possible to locate particular rows without using
lengthy searches through the entire table. Thus, an index on the Id column of the
STUDENT table might contain a list of pairs (Id, pointer) where the pointer points to
the row of the table containing the corresponding Id. If such an index were present,
the DBMS would automatically use it to find the row that satisfies the query (2.1).1f
the table also had an index on the column Status, the DBMS would use that index
to find the rows that satisfy the query (2.2). If this second index did not exist, the.
DBMS would automatically use some other method to satisfy (2.2)—for example;;
it might look at every row in the table in order to locate all rows having the valu
senior in the Status column. The programmer does not specify what method t
use—just the condition the desired result table must satisty.

In addition to selecting appropriate indices to use, the query optimizer uses thi
properties of the relational operations to further improve the efficiency with whic
a query can be processed-—again, without any intervention by the programme
Nevertheless, programmers should have some understanding of the strategies
DBMS uses to satisfy queries so they can design the database tables, indices, 2




2.2 Introduction to Relational Databases

SQL statements in such a way that they will be executed in an efficient manner
consistent with the requirements of the application.

Changing the contents of tables. The following examples illustrate the SQL
statements for modifying the contents of a table. The staternent

UPDATE  STUDENT
SET Status = 'sophomore'
WHERE Id = '111111111°

updates the STUDENT table to make John Doe a sophomore. The statement

INSERT

INTO STUDENT (Id, Name, Address, Status)

VALUES ('999999999', 'Winston Churchill', '10 Downing St',
'senior')

inserts a new row for Winston Churchill in the STUDENT table. The statement

DELETE
FROM STUDENT
WHERE Id = '"111111111"

deletes the row for John Doe from the STUDENT table. Again, the details of how these
operations are to be performed need not be specified by the programmer.

Creating tables and specifying constraints. Before you can store data in a table,
the table structure must be created. For instance, the STUDENT table could have been
created with the SQL statement

CREATE TABLE STUDENT(
Id INTEGER,
Name CHAR(20),
Address CHAR(50),
Status CHAR(10),
PRIMARY KEY (Id) )

————————————

where we have declared the name of each column and the domain (type) of the
data that can be stored in that column. We have also declared the Id column to be a
Primary key to the table, which means that each row of the table must have a unique
value in that column and the DBMS will (most probably) automatically construct
an index on that column. The DBMS will enforce this uniqueness constraint by
not allowing any INSERT or UPDATE statement to produce a row with a value in
the Id column that duplicates a value of Id in another row. This requirement is an




20

CHAPTER 2 The Big Picture

example of an integrity constraint (sometimes called a consistency constraint)—
an application-based restriction on the values that can appear as entries in the
database. We discuss integrity constraints in more detail in the next section.

We have given simple examples of each statement type to highlight the con-
ceptual simplicity of the basic ideas underlying SQL, but be aware that the complete
language has many subtleties. Fach statement type has a large number of options
that allow very complex queries and updates. For this reason, mastery of SQL re-
quires significant effort. We continue our discussion of relational databases and SQL

in Chapter 3.

2.3 What Makes a Program a Transaction—
The ACID Properties

In many applications, a database is used to model the state of some real-world
enterprise. In such applications, a transaction is a program that interacts with that
database so as to maintain the correspondence between the state of the enterprise
and the state of the database. In particular, a transaction might update the database
to reflect the occurrence of a real-world event that affects the enterprise state. An
example is a deposit transaction at a bank. The event is that the customer gives the
teller the cash and a deposit slip. The transaction updates the customer’s account
information in the database to reflect the deposit.

Transactions, however, are not just ordinary programs. Requirements are placed
on them, particularly on the way they are executed, that go beyond what is normally
expected of regular programs. These requirements are enforced by the DBMS and the
TP monitor.

Consistency. A transaction must access and update the database in such a way that
it preserves all database integrity constraints. Every real-world enterprise is organized
in accordance with certain rules that restrict the possible states of the enterprise. For
example, the number of students registered for a course cannot exceed the number
of seats in the room assigned to the course. When such a rule exists, the possible
states of the database are similarly restricted.

The restrictions are stated as integrity constraints. The integrity constraint cor-
responding to the above rule asserts that the value of the database item that records
the number of course registrants must not exceed the value of the item that records
the room size. Thus, when the registration transaction completes, the database must
satisfy this integrity constraint (assuming that the constraint was satisfied when the
transaction started).

Although we have not yet designed the database for the Student Registration
System, we can make some assumptions about the data that will be stored and
postulate some additional integrity constraints:

s JCO. The database contains the Id of each student. These Ids must be unique.

W ICI. The database contains a list of prerequisites for each course and, for each
student, a list of completed courses. A student cannot register for a cours€
without having taken all prerequisite courses.

P T o I o S Y o

rm




2.3 What Makes a Program a Transaction—The ACID Properties

®  JC2. The database contains the maximum number of students allowed to take
each course and the number of students who are currently registered for each
course. The number of students registered for each course cannot be greater than
the maximum number allowed for that course.

B [C3. It might be possible to determine the number of students registered for (or
enrolled in) a particular course from the database in two ways: the number is
stored as a count in the information describing the course, and it can be calcu-
lated from the information describing each student by counting the number of
student records that indicate that the student is registered for (or enrolled in)
the course. These two determinations must yield the same result.

In addition to maintaining the integrity constraints, each transaction must
update the database in such a way that the new database state reflects the state
of the real-world enterprise that it models. If John Doe registers for CS305, but
the registration transaction records Mary Smith as the new student in the class,
the integrity constraints will be satisfied but the new state will be incorrect. Hence,
consistency has two dimensions.

Consistency. The transaction designer can assume that when execution of the trans-
action is initiated, the database is in a state in which all integrity constraints are
satisfied and, in addition, the database correctly models the current state of the en-
terprise. The designer has the responsibility of ensuring that when execution has
completed, the database is once again in a state in which all integrity constraints are
satisfied and, in addition, that the new state reflects the transformation described
in the transaction’s specification (in other words, that the database still correctly
models the state of the enterprise).

SQL provides some support for the transaction designer in maintaining consistency.
When the database is being designed, the database designer can specify certain types
of integrity constraints and include them within the statements that declare the
format of the various tables in the database. The primary key constraint of the
SQL statement (2.3) is an example of this. Later, as each transaction is executed,
the DBMS automatically checks that each specified constraint is not violated and
prevents completion of any transaction that would cause a constraint violation.

Atomicity. In addition to the transaction designer’s responsibility for consistency,
the TP monitor must provide certain guarantees concerning the manner in which
transactions are executed. One such condition is atomicity.

Atomicity. The system must ensure that the transaction either runs to completion
or, if it does not complete, has no effect at all (as if it had never been started).

In the Student Registration System, either a student has registered for a course or he
has not registered for a course. Partial registration makes no sense and might leave
the database in an inconsistent state. For example, as indicated by constraint 1C3,
: two items of information in the database must be updated when a student registers,




22

CHAPTER 2 The Big Picture

If a registration transaction were to have a partial execution in which one update
completed but the system crashed before the second update could be executed, the
resulting database would be inconsistent.

When a transaction has successfully completed, we say that it has committed.
If the transaction does not successfully complete, we say that it has aborted and
the TP monitor has the responsibility of ensuring that whatever partial changes the
transaction has made to the database are undone, or rolled back. Atomic execution
means that every transaction either commits or aborts.

Notice that ordinary programs do not necessarily have the property of atomicity.
For example, if the system were to crash while a program that was updating a file
was executing, the file could be left in a partially updated state when the system
recovered.

Durability. A second requirement of the transaction processing system is that it
does not lose information.

Durability. The system must ensure that once the transaction commits, its effects
remain in the database even if the computer, or the medium on which the database
is stored, subsequently crashes.

For example, if you successfully register for a course, you expect the system to
remember that you are registered even if it later crashes. Notice that ordinary
programs do not necessarily have the property of durability either. For example,
if a media failure occurs after a program that has updated a file has completed, the
file might be restored to a state that does not include the update.

Isolation. In discussing consistency, we concentrated on the effect of a single
transaction. We next examine the effect of executing a set of transactions. We say
that a set of transactions is executed sequentially, or serially, if one transaction in the
set is executed to completion before another is started. The good news about serial
execution is that if all transactions are consistent and the database is initially in a
consistent state, serial execution maintains consistency. When the first transaction
in the set starts, the database is in a consistent state and, since the transaction is
consistent, the database will be consistent when the transaction completes. Because
the database is consistent when the second transaction starts, it too will perform
correctly and the argument will repeat.

Serial execution is adequate for applicaticns that have modest performance
requirements. However, many applications have strict requirements on response
time and throughput, and often the only way to meet the requirements is to process
transactions concurrently. Modern computing systems are capable of servicing more
than one transaction simultaneously, and we refer to this mode of execution as
concurrent. Concurrent execution is appropriate in a transaction processing system
serving many users. In this case, there will be many active, partially completed
transactions at any given time. ,




2.3 What Makes a Program a Transaction—The ACID Properties

Sequence of Database

— Operations Output by T,

OP1,1 0Py 2

Sequence of Database

/ Operations Input to DBMS

Computation . /

y  OP1,1 OP2 4 O OPq o

\ L

OP2,1 OP22

" Local Variables
-

FIGURE 2.3 The database operations output by two transactions in a concurrent schedule
might be interleaved in time. (Note that the figure should be interpreted as meaning that
opy,1 arrives first at the DBMS, followed by 0py,1, etc)

In concurrent execution, the database operations of different transactions are
effectively interleaved in time, a situation shown in Figure 2.3. Transaction T
alternately computes using its local variables and sends requests to the database
system to transfer data between the database and its local variables. The requests
are made in the sequence o0p; 1, op; . We refer to that sequence as a transaction
schedule. T, performs its computation in a similar way. Because the execution of
the two transactions is not synchronized, the sequence of operations arriving at the
database, called a schedule, is an arbitrary merge of the two transaction schedules.
The schedule in the figure is 0p1,1, OP2,1, OPz,2, OpP1, 2.

When transactions are executed concurrently, the consistency of each trans-
action is not sufficient to guarantee that the database that exists after both have
completed correctly reflects the state of the enterprise. For example, suppose that
Ty and T, are two instances of the registration transaction invoked by two students
who want to register for the same course. A possible schedule of these transactions
Is shown in Figure 2.4, where time progresses from left to right and the notation
r(cur_reg : n) means that a transaction has read the database object cur_reg, which

FIGURE 2.4 A schedule in which two registration transactions are not isolated from each other.

Ty : r{cur_reg: 29) w(cur_reg: 30)

Ty : r(cur_reg: 29) w(cur_reg: 30)




24

CHAPTER 2 The Big Picture

records the number of current registrants, and the value n has been returned. A sim-
ilar notation is used for w(cur_reg : n). The figure shows only the accesses! to cur_reg.

Assume that the maximum number of students allowed to register is 30 and the
current number is 29. In its first step, each of the two transactions will read this
value and store it in its local variable, and both will decide that there is room in
the course. In its second step, each will increment its private copy of the number of
current registrants; hence, both will calculate the value 30. In their write operations,
both will write that same value, 30, into cur_reg.

Both transactions complete successfully, but the number of current registrants
is incorrectly recorded as 30 when it is actually 31 (even though the maximum
allowable number is 30). This is an example of what is often referred to as a lost
update because one of the increments has been lost. The resuiting database does
not reflect the real-world state, and integrity constraint IC2 has been violated. By
contrast, if the transactions had executed sequentially, Ty would have completed
before T, was allowed to start. Hence, T, would find the course full and would not
register the student.

As this example demonstrates, we must specify some restriction on concurrent
execution that is guaranteed to maintain the consistency of the database and the
correspondence between the enterprise state and the database state. One such re-
striction that is obviously sufficient follows.

Isolation. Even though transactions are executed concurrently, the overall effect of
the schedule must be the same as if the transactions had executed serially in some
order.

it should be evident that if the transactions are consistent and if the overall effect
of a concurrent schedule is the same as that of some serial schedule, the concurrent
schedule will maintain consistency. Concurrent schedules that satisfy this condition
are called serializable.

As was the case with atomicity and durability, ordinary programs do not neces-
sarily have the property of isolation. For example, if programs that update a common
set of files are executed concurrently, updates might be interleaved and produce an
outcome that is quite different from that obtained if they had been executed in any
serial order. That result might be totally unacceptable.

ACID properties. The features that distinguish transactions from ordinary pro-
grams are frequently referred to by the acronym ACID [Haerder and Reuter 1983]:

m  Atomic. Fach transaction is executed completely or not at all.
m  Consistent. Each transaction maintains database consistency.

m  Isolated. The concurrent execution of a set of transactions has the same effect
as some serial execution of that set.

1in a relational database, r and w represent SELECT and UPDATE statements. ’




Exercises

Durable. The effects of committed transactions are permanently recorded in
the database.

When a transaction processing system supports the ACID properties, the database
maintains a consistent and up-to-date model of the real world and the transactions
supply responses to users that are always correct and up tc date.

BIBLIOGRAPHIC NOTES

The relational model for databases was introduced in [Codd 1970, 1990]. The SQL
language is described by the various SQL standards, such as [SQL 1992]. The term
“ACID” was coined by [Haerder and Reuter 1983], but the individual components of
ACID were introduced in earlier papers—for example, [Grayetal. 1976] and [Eswaran
et al. 1976].

EXERCISES

2.1

2.2

2.3

2.4
2.5

Given the relation MARRIED that consists of tuples of the form {(a, b), where a is

the husband and b is the wife, the relation BROTHER that has tuples of the form

{¢, d), where c is the brother of d, and the relation SIBLING, which has tuples of

the form (e, f), where e and f are siblings, describe how you would define the

relation BROTHER-IN-LAW, where tuples have the form (x, y) with x being the

brother-in-law of y.

Design the following two tables (in addition to that in Figure 2.1) that might be

used in the Student Registration System. Note that the same student Id might

appear in many rows of each of these tables.

a. A table implementing the relation COURSESREGISTEREDFOR, relating a student’s
Id and the identifying numbers of the courses for which she is registered

b. A table implementing the relation COURSESTAKEN, relating a student’s Id, the
identifying numbers of the courses he has taken, and the grade received in each
course

Specify the predicate corresponding to each of these tables.
Write an SQL statement that

a. Returns the Ids of all seniors in the table STUDENT
b. Deletes all seniors from STUDENT
¢. Promotes all juniors in the table STUDENT to seniors

Write an SQL statement that creates the TRANSCRIPT table.
Using the TRANSCRIPT table, write an SQL statement that

a. Deregisters the student with Id = 123456789 from the course CS305 for the fall
of 2001

b. Changes to an A the grade assigned to the student with Id = 123456789 for the
Course CS305 taken in the fall of 2000 ’

¢. Returns the Id of all students who took CS305 in the fall of 2000

25




CHAPTER 2 The Big Picture

2.6

2.7

2.8

2.9

2.10

2.12

Write an SQL statement that returns the names (not the Ids) of al students who
received an A in CS305 in the fall of 2000.

State whether or not each of the following statements could be an integrity
constraint of a checking account database for 4 banking application. Give reasons
for your answers.

a. The value stored in the balance column of an account is greater than or equal
to $0.

b. The value stored in the balance column of an account is greater than it was
last week at this time.

C. The value stored in the balance column of an account is $128 .32

d. The value stored in the balance column of an account is a decimal number
with two digits following the decimal point.

e. The social_security_number column of an account is defined and contains
a nine-digit number,

f. The value stored in the check_credit_in_use column ofan account is less than
or equal to the value stored in the total_approved_check_credit column.
(These columns have their obvious meanings.)

State five integrity constraints, other than those given in the text, for the database
in the Student Registration System.

Give an example in the Student Registration System where the database satisfies
the integrity constraints ICO-IC3 but its state does not reflect the state of the real
world.

State five (possible) integrity constraints for the database in an airline reservation
system.

A reservation transaction in an airline reservation system makes a reservation on
a flight, reserves a seat on the plane, issues a ticket, and debits the appropriate
credit card account. Assume that one of the integrity constraints of the reservation
database is that the number of reservations on each flight does not exceed the
number of seats on the plane. (Of course, many airlines purposely over-book and
50 do not use this integrity constraint.) Explain how transactions running on this
System might violate

a. Atomicity
b. Consistency
¢. Isolation

d. Durability

Describe informally in what ways the following events differ from or are similar
to transactions with respect to atomicity and durability.

a. A telephone call from a Pay phone (Consider line busy, no answer, and wrong
number situations. When does this transaction “commit?”)

b. A wedding ceremony (Suppose that the groom refuses to say “I do.” When does
this transaction “commit?”)

¢. The purchase of a house {Suppose that, after a purichase agreement is signed,
the buyer is unable to obtain a mortgage. Suppose that the buyer backs out




Exercises

2.13  Assume that, in addition to storing the grade a student has received in every course

he has completed, the system stores the student’s cumulative GPA. Describe an
integrity constraint that relates this information. Describe how the constraint
would be violated if the transaction that records a new grade were not atomic.

’

different courses) were run concurrently.




14.1 Software Engineering Methodology

The implementation of 5 transa
endeavor. The Project must complete on ti

“good engineering practice.” Many b
engineering. Here we sketch on

In particular we talk about what software engineers call the Waterfall model,

e phases; requirements, specification,




490

CHAPTER 14 Requirements and Specifications

Requirements Document. Projects usually begin with an informal Statement of
Objectives as given at the beginning of Section 2.1. The next step is for the customers
and users of the system, perhaps with the help of a system analyst, to expand
these objectives into a formal Requirements Document for the system as given
in Section 14.2. The Requirements Document describes in some detail what the
system is supposed to do, not how it will do it. In many contexts, the Requirements
Document is a Request for Proposals (RFP) to the implementors, describing what the
customer wants them to build.

Specification Document. The implementation group analyzes the Requirements
Document in detail and produces a Specification Document, which is an expanded
version of the Requirements Document that describes in still more detail what the
system will do. In many contexts, the Specification Document is a contract proposal,
describing exactly what the implemenration group intends to build. The description
is so precise that the User Manual and the Specification Document can be written
and published at the same time. The following examples illustrate the different levels
of detail in the requirements and specification documents.

B In the Requirements Document, the set of user interactions with the system is
listed, together with what each interaction is intended to do. In the Specification
Document, the forms associated with each interaction are specified, together
with exactly what happens when each button is pressed and each menu item is
accessed.

® The Requirements Document lists the information that must be contained in
the system. The Specification Document includes the domains of all items of
information.

14.1.1 UML Use Cases

The Requirements Document specifies what the system is supposed to do from the
user’s point of view. Specifically, it specifies the user interactions with the system.
A common way to describe user interactions with the system is as a set of use
cases. A software engineering text might define a use case as a sequence of actions
that are performed to produce an observable result of benefit to one or more users
(called actors). For example, in the Requirements Document, we have a use case
called Registration in which a student registers for a course. Analysts often develop
use cases by asking potential users of the system, “How do you accomplish such and
such?”. Thus we might ask a student, “How do you register for a course?” and then
ask the registrar, “What are some situations in which the registration should not
succeed?”. Their responses might be the basis for developing the Registration use
case, in which a student is the actor. Such a use case might be described as follows:

Registration.

Purpose. Register a student in a course to be taught next semester.
Actor. A student.

Input. A course number.




14.1 Software Engineering Methodology

Result. The student is registered for the course, and an appropriate message is dis-
played.

Exception. The registration shall not be successful for any of the following reasons,
which shall be contained in the output.

A.  There exists a prerequisite course that the student is not currently enrolled in or
has not completed with a grade of at least C.

B. Andsoon. (The complete list of exceptions is in the Requirements Document.)

Different software engineering texts use different formats for describing use
Cases. We use a particular format that seems appropriate for this application. Other
formats might include Preconditions—what must be true before the use case starts; for
example a precondition for the Registration use case might be that the Authentica-
tion use case for that actor has been successful; or Actions-—for example, the student
first does this, then that happens, then the student does this, etc.

Note that we describe user interactions using use cases rather than transactions
because at this stage we do not yet know how many transactions will be required to
implement each use case—that is part of the design.

Use cases are part of the Unified Modeling Language (or UML). The UML is a graph-
ical language for modeling the static and dynamic behavior of a system. It provides
a standard set of diagrams, each of which models a different aspect of the system'’s
behavior. Because these diagrams are graphical, they are particularly appropriate for
communicating information between the customer and the implementation group
and between different members of the implementation group. Also, because the
UML has become a widely adopted standard, UML diagrams can be used to commu-
nicate with other people not directly involved in the project, perhaps consultants
invited in for a project review.

UML diagrams are one of the sources on which the requirements, specification,
and design documents are based. In particular they are used to capture and display
certain key aspects of the system behavior needed for these documents. Use cases
and, as we shall see, use case diagrams are a part of the UML that deals with
formulating requirements. In Section 14.4, we discuss the use of UML sequence
diagrams for formulating specifications. In Chapter 4 we discuss the use of UML
class diagrams for database design, and in Section 15.1.2 we discuss the use of UML
state diagrams for describing the dynamic behavior of objects as part of the design
process.

Although use cases are not inherently graphic in nature, the UML provides
a graphic way to display the use cases in an application: the use case diagram.
Figure 14.1 shows a use case diagram for all the use cases in the Student Registration
System (as described in Section 14.2). Each actor in the use case is represented as
a labeled stick figure, and each use case is represented as a labeled oval. Arrows
connect each actor with the use cases in which the actor participates. Such a use

s

491




492 CHAPTER 14 Requirements and Specifications

Student Grade

Student/Faculty

Authentication .
Information

Get
Grade History

Course
Information

Register

Get
Registered
Courses

End of
Semester

Deregister
Student Faculty

Member

Get
Enrolled
Courses

Get Class
Roster

End of Session

OLAP Query

FIGURE 14.1 A use case diagram for the Student Registration System:.




14.2 The Requirements Document for the Student Registration System

for the system. Use case diagrams provide a visually clear model for displaying the
requirements of an application and might be included as part of the Requirements
Document.

14.2 The Requirements Document for the Student
Registration System
l. Introduction

The objectives of the Student Registration System are to allow students and faculty
(as appropriate) to

A. Authenticate themselves as users of the system
Register and deregister for courses (offered for the next semester)
Obtain reports on a particular student’s status

Maintain information about students and courses

= 0 0O W

Enter final grades for courses that a student has completed

In this document, the term “enrolled” refers to courses a student is currently taking
and the terms “registered” and “deregistered” refer to courses to be taken or dropped
by the student in the following semester.

Il. Related Documents
A, Statement of Objectives of the Student Registration System (including date and
version number)

B. This university’s Undergraduate Bulletin (including date)

ill. Information to Be Contained in the System

The information to be stored in the system includes four major categories of data:
personal information about students and faculty members, academic records of
students, teaching records of faculty members, and information about courses and
course offerings. Information about classrooms and other auxiliary data is also stored
in the system.

J A. Personal records. The system shall contain a name, an Id number, and a
4 ¢ password for each student and faculty member allowed to use the system.! The
‘ ; password and the Id authenticates users. Id numbers are unique. It is assumed

! Note that the requirements are numbered so that they can be referred to in later documents,
such as the Test Plan, which must test that the system meets every one of its requirements. Also,
requirements that are stated using words such as “shall” and “rust” are mandatory. Words such
as “should” and “can” do not connote a mandatory requirement and should be avoided unless
the requirement is optional. For example, in one of the earliest recorded Requirements Documents
(even then the requirements were numbered), the commandment is “Thou shalt not kill,” not
“Thou should not kill.”

493

AQNLS IASVYD




CHAPTER 14 Requirements and Specifications

that at least one faculty member has been initialized as a valid user at startup
time.

Academic records. The system shall contain the academic record of each sty-
dent.

1. Each course the student has completed, the semester the student took the
course, and the grade the student received (all grades are in the set (A, B, C,
D, E1)

2. Each course for which the student is enrolied this semester

3. Each course for which the student has registered for next semester

Course information. The system shall contain information about the courses
offered, and for each course the system: shall contain

1. The course name, the course number (must be unique), the department
offering the course, the textbook, and the credit hours

2. Whether the course is offered in spring, fall, or both

3. The prerequisite courses (there can be an arbitrary number of prerequisites
for each course)
The maximum allowed enroliment, the number of students who are en-
rolled (unspecified if the course is not offered this semester), and the number
of students who have registered (unspecified if the course is not offered next
semester)
If the course is offered this sernester, the days and times at which it is offered;
if the course is offered next semester, the days and times at which it will be
offered. The possible values shall be selected from a fixed list of weekly slots
(e.g., MWF10).
The Id of the instructor teaching the course this semester and next semester
(the Id is unspecified if the course is not offered in the specified semester;
it must be specified before the start of the semester in which the course is
offered)
The classroom assignment of the course for this semester and next semester
(the classroom assignment is unspecified if the course is not offered in the
specified semester; it must be specified before the start of the semester in
which the course is offered)

All course information shall be consistent with the Undergraduate Bulletin.

Teaching information. The system shall contain a record of all courses that
have been taught, including the semester in which they were taught and the Id
of the instructor.

Classroom information. The system shall contain a list of classroom identifiers
and the corresponding number of seats. A classroom identifier is a unique three-
digit integer.

Auxiliary information. The system shall contain the identity of the current
semester (e.g., F2004).

s




14.2 The Requirements Document for the Student Registration System

IV. Integrity Constraints
The database shall satisfy the following integrity constraints.

A
B.

Id numbers are unique.

If in item II.B.2 (or 1IL.B.3) a student is listed as enrolled (or registered) for a
course, that course must be indicated in item 1I1.C.2 as offered this semester (or
next semester).

In item II.C .4, the number of students registered or enrolled in a course cannot
be larger than the maximum enrollment.

The count of students enrolled (or registered) in a course in item I11.B.2 (or [11.B.3)
must equal the current enrollment (or registration) indicated in item II1.C.4.

An instructor cannot be assigned to two courses taught at the same time in the
same semester.

‘Two courses cannot be taught in the same room at the same time in a given
semester.

If a student is enrolled in a course, the corresponding record must indicate that
the student has completed all prerequisite courses with a grade of at least C.

A student cannot be registered (or enrolled) in two courses taught at the same
hour.

A student cannot be registered for more than 20 credits in a given semester.

The room assigned to a course must have at least as many seats as the maximum
allowed enrollment for the course.

Once a letter grade of A, B, C, D, or F has been assigned for a course, that grade
cannot later be changed to an 1.2

V. Use Cases

Use cases are performed during sessions. A session starts when a user executes an
Authentication use case and ends when a user executes an End of Session use case.
During a session, a user can execute one or more use cases. The use case diagram
for these use cases is shown in Figure 14.1 (which is assumed to be part of the
Requirements Document).

A

Authentication.

Purpose. Identify the actor and determine whether she is a student or faculty
member. Subsequent use cases in the same session depend on this distinction.
Actor. A student or a faculty member.

Input. The actor’s Id number and password.

2 This is an example of a dynamic integrity constraint, which limits the allowable changes to the
state of a database, in contrast to a static integrity constraint, which limits the allowable states of
the database. We discuss dynamic integrity constraints in Section 3.2.2.

0
>
W
m
W
o
C
v
<




o

496 CHAPTER 14 Requirements and Specifications

Result. The actor is authenticated and can perform other use cases she is autho-
rized to perform.

Exception. If the actor enters an incorrect Id or password, authentication does
not occur and the actor is given another chance to enter an Id and password.

Registration.

Purpose. Register a student in a course to be taught next semester.

Actor. A student.

Input. A course number.

Result. The student is registered for the course, and an appropriate message is
displayed.

Exception. The registration shall not be successful for any of the following rea-
sons, which shall be contained in the output:

1. There exists a prerequisite course that the student is not currently enrolled
in or has not completed with a grade of at least C.

2. The number of students registered for the course would exceed the allowed

maximum.

The initiator of the use case is not a student.

The student has registered for another course scheduled at the same time.

5. Thestudent s enrolled in the course or has taken the course and has received
a grade of C or better.

6. The course is not offered next semester.

The student is already registered for the course.

8. The student would be taking more than 20 credits if the registration were
to succeed.

Ll

>

Deregistration.

Purpose. Deregister the student from a course to be taught next semester for
which that student previously registered.

Actor. A student.

Input. A course number.

Result. The student is no longer registered for the course, and an appropriate
message is displayed.

Exception. If the student is not registered for the course, the deregistration shall
be unsuccessful.

Get Grade History.

Purpose. Produce a report describing the grade history of a student for each
semester in which he has completed courses.

Actor. A student or a faculty member.

Input. A student Id number. If a student is executing the use case, the number
need not be entered because the student can request only his or her own report,
and the Id of the invoker has been determined as part of authentication.
Result. The report shall include

1. Current semester
2. Student name and Id number

Mmoo W~ oD

—

e e N M e N




14.2  The Requirements Document for the Student Registration System

3. List of courses completed with grade and instructor grouped by semester

4. Semester GPA and total number of credits for each semester in which the
student has completed courses

5. Cumulative GPA and total number of credits of all courses completed so far

Exception. If a faculty member is executing the use case and an invalid student
Id is input, no report shall be produced.

Get Registered Courses.
Purpose. Produce a report listing the courses for which a particular student has
registered for the next semester.

Actor. A student or a faculty member.

Input. A student Id number. If a student is executing the use case, the number
need not be entered because the student can request only his or her own report,
and the Id of the invoker has been determined as part of authentication.
Result. The report shall include

1. Student’s name and Id number

2. Course number and credit hours

3. Time schedule for every course

4. Classroom assignment (if available)
5. Instructor (if available)

Exception. 1f a faculty member is executing the use case and an invalid student
Id is input, no report shall be produced.

Get Enrolled Courses.

Purpose. Produce a report listing the courses in which a particular student is
enrolled this semester.

Actor. A student or a faculty member.

Input. A student Id number. If a student is executing the use case, the number
need not be entered because the student can request only his or her own report,
and the Id of the invoker has been determined as part of authentication.
Result. The report shall include

1. Student’s name and Id number
2. Course number and credit hours
3. Time schedule for every course
4. Classroom assignment

5. Instructor

Exception. If a faculty member is executing the use case and an invalid student
Id is input, no report shall be produced.

Student Grade.
Purpose. Assign or change a grade for a course a student has completed.
Actor. The faculty member who taught the course.

Input. A student Id number, a course number, a semester, and a grade.

AdQNLS ISV




498 CHAPTER 14 Requirements and Specifications

Result.

1. The student shall no longer be shown as enrolled in that course, but shall
be shown as having completed that course.

2. If the course is a prerequisite for some course in the following semester for
which the student is currently registered and if the grade is less than C, the
student shall be deregistered from that course.

Exception. The grade shall not be assigned or changed if

1. Theinvoker is not the faculty member who taught the course in the semester
indicated.

2. The student Id number is invalid.

3. The student is not currently enrolled in the course or did not take the course
in a previous semester.

4. The use case would change a grade (A, B, C, D, F) toan L.

Student/Faculty Information.

Purpose. Add, delete, or edit an entry specified in item IILA.

Actor. a faculty member.3

Input. If an entry is to be added, the name, Id number, faculty/student status,
and password must be supplied. If an entry is to be deleted or edited, the Id
number must be provided as well as any fields to be changed.

Result. The specified information is added, edited, or deleted.

Course Information.

Purpose. Display or edit the information describing an existing course (item 1I1.C)
or enter information describing a new course.

Actor. A student or a faculty member.

Input. A course number.

Result. The requested information is displayed and can be edited. A faculty
member can change any characteristic of a course but cannot delete the course.
Students shall be allowed only to display (not to enter or edit) information about
a course.

Exception. If the edited course information would violate any integrity con-
straint, no update shall take place.

End of Semester.

Purpose. Update the database to reflect the end of the semester.
Actor. A faculty member.

Result.

1. The identity of the current semester, as specified in item IILF, shall be
advanced.

2. For each student, an I grade shall be assigned for all courses in which that
student is currently enrolled and for which no grade has yet been assigned.

*In a real system, this information would be controlled by a database administrator using a special
sct of transactions. In this project, we assume for simplicity that the database has been initialized
with at least one faculty member’s name, Id, and password.




14.2 The Requirements Document for the Student Registration System

Fach student shall be indicated as enrolled in those courses for which the
database previously indicated that the student was registered.

For each course listed in item I11.C.4, the number of students enrolled shall
be set equal to the number registered, and the number registered shall be
set to 0.

Exception. 1f a course is scheduled to be taught next semester to which an
instructor or classroom has not yet been assigned, the semester shall not be
updated, no database changes shall be made, and an appropriate message shall
be displayed.

Get Class Roster.

Purpose. Produce a list of the names and Id numbers of students currently en-
rolled in or registered for a course.

Actor. A faculty member.

Input. A course number and an indication of whether an enroliment or a regis-
tration list is requested.

Result. The requested class roster is displayed.

Exception. If an enrollment list for a course not currently being taught or a reg-
istration list for a course not to be taught next semester is requested, no display
is returned.

Room.

Purpose. Display the size (i.e., number of seats) of an existing classroom (item
111.E) or enter the identifier and size of a new classroom.

Actor. A faculty member.

Input. A classroom identifier and the number of seats (if a new classroom is to be
entered) or just the identifier (if the size of an existing classroom is requested).
Result. The requested information is displayed or the identity and size of the
new classroom is stored in the database.

Exception. If an existing classroom size is requested and the specified classroom
identifier is incorrect, an appropriate error message is displayed.

. OLAP Query.

Purpose. Allow the user to input an arbitrary query from the screen.

Actor. A faculty member (who, it is assumed, knows the database schema).
Input. A query in the form of a single SELECT statement.

Result. The table produced by the query is output on the screen with attribute
names (where possible) heading each column.

Exception. If a statement other than a SELECT is input or if the statement is
incorrect, an appropriate error message is returned.

End of Session.

Purpose. End the session.

Actor. A student or a faculty member.

Input. The actor clicks the logout button.

Result. Any subsequent use cases with the system require a new authentication.

ACQNLS ISV




CHAPTER 14 Requirements and Specifications

VL. System Issues

A. The system shall be implemented as a client/server system. The client computer
shall be a PC on which the application programs will execute.

The user interface shall be graphical and easy to use by students and faculty with
little or no training.

The database can be any SQL database that executes on an available server
computer and provides a transactional interface (in other words, it can perform
the commit and abort operations).

. Deliverables

A Specification Document that describes in detail the sequence of events (input/
output) that occurs for each use Case, including

1. The forms and controls to be used

2. The effect of using each control on each form, including any new forms that
are displayed as a result of each possible action
The errors for which the system checks and the error messages that are
output

4. Integrity constraints

A Design Document that describes in detail

1. An entity-relationship (E-R) diagram that describes the system

2. The declaration of all database elements (including tables, domains, and
assertions)

3. The decomposition of each use case into transactions and procedures

4. The behavior of each transaction and procedure

A Test Plan describing how the system will be tested, including how each of the
numbered requirements and specifications will be tested

CASE STUDY

A demonstration of the completed system (including running the tests in the
Test Plan)

Fully documented code for the system

A User Manual with Separate sections for student and faculty

Version 2 of the Specification Document, the Design Document, and the Test
Plan, describing the as-built system

14.3 Requirements Analysis—New Issues

The next phase of the project is to analyze the Requirements Document and pro-
duce a formal Specification Document. Experience has shown that, no matter how
carefully the Requirements Document is written, when the implementation team
analyzes the requirements in order to prepare the Speciﬁcati,on Document, a number




14.3 Requirements Analysis—New lssues

of new issues will be identified. Parts of the Requirements Document will be found
to be inconsistent or incomplete, and questions will be raised about the desired
behavior of the system in certain previously unforeseen situations. The implemen-
tation team customarily presents these issues to the customer, who resolves them
in a written document. The resolved issues then become part of a revised version
of the Requirements Document and part of the initial version of the Specification
Document. This entire scenario underscores the difficulties in precisely specifying
the desired behavior of a proposed system.

When the Requirements Document given in Section 14.2 was analyzed by our
local implementation team, a number of issues were identified. Below we present
some of these together with their resolution. Your local implementation team is
likely to discover other issues.

Issue 1. What if, during the Course Information use case, an attempt is made to
add a new prerequisite for a course such that the prerequisites form a cycle? For
example, course A is a prerequisite for course B, B is a prerequisite for course C, and
Cis a prerequisite for A. In other words, course A is a prerequisite for itself.

Resolution. A new database integrity constraint must be added to deal with this
situation: there must not be a cycle of prerequisites. Any transaction that implements
the Course Information use case shall check for this condition, and, if it exists, the
prerequisite shall not be added and an appropriate message shall be presented to the
user. (The check for circularity in the general case is not simple. We might, however,
require that the prerequisite for a course have a lower number than the course itself.
Such a requirement eliminates the possibility of circularity.)

Issue 2. Whatif, during the Course Information use case, an attempt is made to add
a new prerequisite for a course, and a student who does not have that prerequisite
is already registered for that course?

Resolution. A new prerequisite for a course does not apply to the offering of the
course (if any) in the following semester.

Issue 3. What if, during the Course Information use case, the maximum number
of students allowed in a course is reduced to a value that is less than the number of
students who have already registered for the course?

Resolution. Room rescheduling is a fact of academic life, so this use case must be
allowed. However, the appropriate number of students must be deregistered from
the course to bring the total number of registered students to the new maximum.
The students shall be deregistered in the reverse order that they were registered. All
deregistered students shall be notified in writing.

Issue 4. What if, during the Course Information use case, an attempt is made to
change the day and/or time a course is offered?

Resolution. A change in day and/or time does not apply to the offering of the
course (if any) in the following semester.

AQnis ISV




CHAPTER 14 Requirements and Specificatiors

Issue 5. What if, during the Course Information use case, a course is canceled?
Resolution. Cancellation applies to the next semester. Students registered for the
next semester shall be deregistered and notified in writing.

Issue 6. Whatif, during a Student/Faculty Information use case, an attempt is made
to change a student’s Id number?

Resolution. An Id number (in contrast to a name or password) is permanently
associated with an individual, so an atterapt to change it makes no sense, except if
it was originally entered in error. As a result, a change in Id number is allowed only
if there is no other information relevant to the student in the system.

Issue 7. Several of the use cases, such as Get Grade History, Get Registered Courses,
and Get Enrolled Courses, produce reports that describe the state of the database
at a particular instant. Should those reports include the date and time they were
produced?

Resolution. Yes, all such reports shall include the date and time.

Issue 8. Should the information in items I1L.D and IILF contain the year as well as
the semester?

Resolution. Yes, and the End of Semester use case shall appropriately update the
year. This information shall be initialized at startup time.

Issue 9. How many digits should be used to indicate the year in the system?
Resolution. Four.

14.4 Specifying the Student Registration System

A Specification Document contains a complete description of what the system is
supposed to do from the viewpoint of its end users—it is an expanded version of
the Requirements Document. For a transaction processing system, the Specification
Document should include

The integrity constraints of the enterprise
A complete description of the user interface

* A picture of every form with every control specified
* Adescription of what happens when each control is used, including
- What application procedure is executed
~  What changes occur in the form or what new form is displayed
= What error situations can occur and what happens in each such sit-
uation

A description of each use case, including

* The information input by the user and what events cause the use case to be
executed




14.4  Specifying the Student Registration System

A textual description of what the use case does (for example, “the student
is registered for the course”)

¢ A list of conditions under which the use case succeeds or fails, and what
happens in each case

The Specification Document might also contain other information related to
project planning (such as schedules, milestones, deliverables, cost information, etc.),
information related to system issues (such as software and hardware on which the
system must run), and any time or memory constraints. The Table of Contents for
the Specification Document for the Student Registration System has the following
sections:

I. Introduction
Il. Related Documents

lll. Forms and Use Cases
Iv. Project Plans

A. Milestones
B. Deliverables

Note the relationship between the contents of the requirements and specification
documents.

14.4.1 UML Sequence Diagrams

Part of the plan for developing a Specification Document from a Requirements
Document might be to expand each use case into a UML sequence diagram. A
sequence diagram is a graphic display of the temporal order of the interactions
between the actors in a use case and the other modules in the system.

Figure 14.2 is a sequence diagram for the Authentication use case. The actors in
the use case (in the figure, a student ora faculty member) and the pertinent modules
in the system (in the figure, the Web server and the database) are labelled at the
top of the diagram. Time moves downward through the diagram, and the vertical
line descending from each actor and module show its lifetime during the use case.
The boxes on the vertical line show when that actor (or module) is active in the
use case. The horizontal lines show particular actions taken by an actor or module.
Thus, the sequence diagram starts with the student or faculty member typing in
the URL of the Student Registration System, after which the Web server displays
the Welcome Form (Figure 14.3). Note the notation used for conditional actions:
[status = student] Display Student Options Form. This means that if the status returned
by the Authentication interaction is “student,” the Wet server displays the Student
Options Form.

Note that Specification III.A in the Specification Document given in Section 14.5
is an English-language description of the sequence diagram in Figure 14.2.




CHAPTER 14 Requirements and Specifications

Student or
Faculty Member Web Server Database

Enter URL

Display Welcome Page

Enter ID and Password

Click OK
Validate Login

[status=student] - Return Status
Display Student Options Page ‘ |

[status=tacuity]
Display Faculty Options Page

[status=fail]
Display Authentication Error Page

[status=fail] Click OK

[status=fail] Display Welcome Page

FIGURE 14.2 A sequence diagram for the Authentication use case.

In the following section, we present the initial part of Section III of the Specifi-
cation Document. We give a design for the database in the the Student Registration
System in Section 4.8 and the design and part of the code for the Registration Trans-
action in Section 15.7.

14.5 The Specification Document for the Student
Registration System: Section Il

Section III of the Specification Document—“Forms and Use Cases”—contains a
detailed description of all interactions with users. Its initial part might look like
this:

Ill. Forms and Use Cases

A. When the Student Registration System is entered, Form 1, the Welcome Form
(Figure 14.3) is displayed. In Form 1

1. The Id and Password text boxes are filled in.




14.5 The Specification Document for the Student Registration System: Section I 505

Welcome to the Student Registration System

Please enter your login Id and password

Id

Password

OK

NS g

N 1/

FIGURE 14.3 Introductory form for the Student Registration System.

The OK command button is clicked to run the Authentication use case.

a. If the Authentication use case fails, Form 2, the Authentication Error
Form, is displayed. In Form 2, clicking the OK command button returns
to Form 1.
If the Authentication use case succeeds and the authenticated user is a
student, Form 3, the Student Options Form, is displayed (as described
in Specification IILB).

c. If the Authentication use case succeeds and the authenticated user is a
faculty member, Form 4, the Faculty Options Form, is displayed.

The Exit command button is clicked to display Form 5, the Do You Really

Want To Exit Form. In Form 5

a. The Yes command button is clicked to exit the Student Registration
System.

b. The No command button is clicked to return to Form 1.

ACdNLS ISYD

4 We omit the figures for the other forms; they would be included in the actual specification.




CHAPTER 14 Requirements and Specifications

B. In Form 3, the Student Options Form,

1. The Course description menu item is selected to run the Get Course Names
use case, which displays Form 6, the Course Name Form. In Form 6
a. A course option box is selected.
b. The OK command button is clicked to run the Get Course Description use
case, which displays Form 7, the Course Description Form.
¢. The Cancel command button is clicked to return to Form 3.

The remainder of Section III of the Specification Document is similar and is
therefore omitted.

14.6 The Next Step in the Software Engineering
Process

After the implementation group has expanded the Requirements Document into
the Specification Document and the customer has signed off on the Specification
Document, the design portion of the project can begin. In contrast with specifica-
tions, which describe what the system is supposed to do, the design describes how
the system is to do what it does. We discuss design in Chapter 15 and the specific
issues involved in designing databases in Chapters 4 and 6. We gave a complete
database design for the Student Registration System in Section 4.8 and the complete
design and part of the code for the Registration Transaction in Section 15.7.

One reason so much time and effort is put into producing requirements and
specification documents is that experience has shown it to be surprisingly difficult
to build a system that actually satisfies the customer’s needs. Often the system’s
requirements are quite complex, and the customer has difficulty articulating his
needs in the precise manner needed for programming, or he leaves out important
details (such as what is supposed to happen if a course is canceled after a number of
students have registered for it) or specifies some feature and then is unhappy with
that feature when it is implemented.

The U.S. Department of Defense, which is probably the largest customer for
software systems in the world, says that over 56% of all the defects in software
systems it contracts for are due to errors in the specifications. It is cheaper and more
efficient to work with the customer at the beginning of the project to sharpen and
refine the specifications than it is to reimplement the system at the end of the project
if it does not meet the customer’s needs.

BIBLIOGRAPHIC NOTES

There are many excellent books on software engineering—for example, [Sum-
merville 2000]; [Pressman 2002]; [Schach 1999]. One of the very few books that
address software engineering for database and transaction processing systems is
(Blaha and Premerlani 1998).




Exercises

EXERCISES

14.1
14.2

Prepare a Requirements Document for a simple calculator.

According to the Requirements Document for the Student Registration System,
one session can include a number of use cases. Later, during the design, we will
decompose each use case into one or more transactions. The ACID properties
apply to all transactions, but a session that involves more than one transaction
might not be isolated or atomic. For example, the trarisactions of several sessions
might be interleaved. Explain why the decision was made not to require sessions
to be isolated and atomic. Why is a session not one long transaction?

Suppose that the database in the Student Registration System satisfies all the
integrity constraints given in Section IV of the Requirements Document Outline
(Section 14.2). Is the database necessarily correct? Explain.

The Requirements Document for the Student Registration System does not address
security issues. Prepare a section on security issues, which might be included in a
more realistic Requirements Document.

In the resolution of issue 2 in Section 14.3, the statement was made that new
prerequisites do not apply to courses offered in the next semester. How can a
Registration Transaction know whether or not a prerequisite is “new”?

Suppose that the Student Registration System is to be expanded to include
graduation clearance. Describe some additional items that must be stored in
the database. Describe some additional integrity constraints.

Prepare a Specification Document for a simple calculator.
Prepare a Specification Document for the controls of a microwave oven.

Specify a use case for the Student Registration System that assigns a room to a
course to be taught next semester.




