Using the Simple Server to Get Information from a Database

Java servlets are used in client-server computing. They are located on the server and unlike applets are not downloaded to the user’s computer. They receive data from html (hypertext markup language) forms that have been downloaded from the server to the client’s computer. When a user enters data and then clicks on the Submit button, the data is sent to the server and processed by the servlet.

Since the servlet works only on the server, there are no security issues involved. Servlets only work with data on the server, and not with that on the user’s computer. Therefore, servlets can read and write to files and get data from and update databases. The diagram below indicates some of the transactions involved.

[image: image11.emf]

The rest of this document will describe the web pages and programs used to get requested data from a database. The example database will represent an address book with the table shown below.

[image: image1]
The HTML Form
The interface to a servlet that we will use is an html form. It can be one component of a web page. An entire web page may contain images, text, and links to other pages as well as forms.

The following web page only contains one form. It sends the server the name of a person in the database in order to find the person’s email address. (It could also be used to get the telephone number if desired.)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>E-Mail Form</title></head>

<body>

<h3>To find an email address, enter the name of the person

 and then click the submit button.</h3>

<form method = "get" action="http://localhost:8080/client_server.FindEmailProcessor">

<input type = "text" name = "keyName" size = "15" /> Name

<p><input type="submit" value="Submit" /></p>

</form>

</body>

</html>

[image: image7.emf]

When the submit button is clicked, the following URL string is sent to the server by Internet Explorer:

GET /client_server.FindEmailProcessor?keyName=Alice+Lee HTTP 1.1

This string is created by the browser and sent to the web address given in the form. In this example it is http://localhost:8080/. The localhost is the local loop.
 It will access the server on port 8080.

The Java Program on the Server

When the server receives the request, it looks in the client_server folder for FindEmailProcessor.class. This is the compiled version of the program below. If the name is in the database, the program will send the following page back to the same browser.

[image: image2]
If the name is not in the database, an error message is returned.

The program must first get the requested name from the URL string. It then uses this name as a key into the database. This is done by constructing a query string containing the name.

"Select * From AddressTable Where Name = '" + keyName + "'"

When the statement is executed, a ResultSet is returned. This object contains a cursor (pointer) that initially points to row 0. Since rows are numbered from 1, this is not a valid row. If a program tries to access anything using the ResultSet at this time, a SQLException will be thrown.

Therefore before getting any data from the ResultSet, the program should invoke the next method. This method returns a boolean value. If the name is not in the database, the value will be false. Otherwise it is true. For this reason, rs.next () can be used as the condition in either a ‘while’ or an ‘if’ statement.

The next method also has a side effect that moves the cursor to the next row in the ResultSet. The ResultSet will include all the rows that contain the keyName. Once the next method has been called, the cursor will indicate the first row in the set. And each succeeding call will move it on to the next row. When it finally reaches the end, the value turns back to false. So if rs.next () is the condition in a while loop, it will provide an exit from the loop.

The following program then is used to get the ResultSet and return the email address to the browser. If the name is not in the database, it returns an error message like the one below.

[image: image3]
package client_server;

/* FindEmailProcessor is used to find an email address for a person in a database. It finds the name and then returns the person’s email address. */

import java.io.*;

import java.sql.*;

public class FindEmailProcessor extends WebRequestProcessor

{

public void process (Request request, Response response)

{

try

{

// Get a PrintWriter and set up the output page.

PrintWriter out = response.getWriter ();

Page.createHeader (out, "Find an Email Address");

// Get a jdbc-odbc bridge and connect to addresses.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

// Get the name from the request.

String keyName = request.getParameter ("keyName");

// Create a query to the database in order to find the email address.

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable Where Name = '" + keyName + "'";

/* Get the result set and if the name is in the database, get the email address. If not, return

an error message. */.

ResultSet rs = stmt.executeQuery (query);

if (rs.next ())

{

String email = rs.getString ("Email");

out.println ("<h3>The email address for " + keyName + " is " + email + "</h3>");

}

else out.println ("<h3>The name was not found in the database.</h3>");

Page.createFooter (out);

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

} // process

} // FindEmailProcessor

// Class with static methods that add standard lines to the html output page.

class Page

{

public static void createHeader (PrintWriter out, String title)

{

out.println ("<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'>");

out.println ("<html>");

out.println ("<head>");

out.println ("<title>" + title + "</title>");

out.println ("</head>");

out.println ("<body>");

} // createHeader

public static void createFooter (PrintWriter out){out.println ("</body></html>");}

} // class Page

Displaying the Entire Database

We can also display the entire contents of the database. The query string used for this is

Select * From AddressTable

This will return a ResultSet that contains all the rows of the table. A form for this program does not send any data. Instead it displays a submit button to send the request to the server.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head>
<title>E-Mail Form</title>

</head>

<body>

<h3>To see the entire Address Book, click the submit button.</h3>

<form method = "get" action="http://localhost:8080/client_server.DisplayAddressProcessor">

<p><input type="submit" value="Submit" /></p>

</form>

</body>

</html>

[image: image4.emf]

[image: image5]
HTML Tables
The program is designed to display the data in an html table. Tables consist of rows and columns; the tags for the rows are <tr> … </tr> and for the columns within the rows <td> … </td>. Tables begin with the tag <table> and end with </table>. The opening tag may also contain attributes such as border, cellspacing, and font color.

In addition to the main tags, a table can have a caption that is put between the tags <caption> and </caption>. It also can have a heading row. This is given with the tags <thead> … </thead>. Between these, put <th><td>…</td><td> … </td><td> … </td></th>.

So the html for a complete table might look like:

<table border = "1" bordercolor = "blue" cellspacing = "5">

<caption> … </caption>

<thead> <th><td>…</td><td> … </td><td> … </td></th> </thead>

<tr> <td>…</td><td> … </td><td> … </td> </tr>

…

<tr> <td>…</td><td> … </td><td> … </td> </tr>

</table>

Tables are widely used in html in order to display data in even rows and columns, not just for displaying data from a database.

The figure below shows how the table in the following program will look when displayed.

[image: image6]
The processing program follows.

package client_server;

//
DisplayAddressProcessor is used to display all the data in the database.

import java.io.*;

import java.sql.*;

public class DisplayAddressProcessor extends WebRequestProcessor

{

public void process (Request request, Response response)

{

try

{

// Get a writer for the output page and display the heading.

PrintWriter out = response.getWriter ();

Page.createHeader (out, "Display Addresses");

// Get a jdbc-odbc bridge and connect to addresses.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

// Create a statement that will retrieve all the data in the database.

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable";

ResultSet rs = stmt.executeQuery (query);

// Call a method that will create the table and display the data.

displayAddresses (out, rs);

Page.createFooter (out);

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

} // process

// displayAddresses creates an html table, gets the data, and displays it in a table.

protected void displayAddresses (PrintWriter out, ResultSet rs)

{

try

{

// Create the table heading.

out.println ("<table border='1' bordercolor='#000000' cellspacing='5'>");

out.println ("<caption>Address Book</caption>");

out.print ("<thead><tr>");

out.print ("<th>Name</th><th>Email</th><th>Telephone</th>");

out.println ("</tr></thead>");

// Display all the rows in the database.

while (rs.next ())

{

// Display each row of the database.

out.print ("<tr>");

out.print ("<td>" + rs.getString ("Name") + "</td>");

out.print ("<td>" + rs.getString ("Email") + "</td>");

out.print ("<td>" + rs.getString ("Telephone") + "</td>");

out.println ("</tr>");

}

out.println ("</table>");

} catch (SQLException es) {out.println ("SQL Exception");}

} // displayAddresses

} // DisplayAddressProcessor

// Class with static methods that add standard lines to the html output page.

class Page

{

// The same methods as before.

} // class Page

Client‘s Computer

Requests and receives an html page from the server.

Sends request to server.

Receives response from server.

Server

Sends html file to user.

Processes requests sent by client with data from the database.

Sends update requests to the database.

Sends response to client.

Database or Data File

Contains data needed by application.

Receives request from server.

Sends data to the servlet.

Makes changes requested by the server.

�

�

�

�

� In Windows 2000 or XP, you can set localhost as an Environment Variable. Go into Settings/Control Panel/System/Advanced/System Variables. Choose New and then enter localhost as the Variable name and 127.0.0.1 as the Variable value. In Windows 98, use Windows Explorer to find Autoexec.bat. It is in the C:\System folder. Edit it and add the line SET localhost=127.0.0.1. When you next boot up your computer, this file will be executed and will set the environment variable.

[image: image8.emf]

[image: image9.emf]

[image: image10.emf]

