Adding Security to an Application
Some applications are just used by their developers, but others are made available to a number of clients. These people may either be in the same company or somewhere on the Internet. For these applications, it is often useful to have levels of access or at least a login involving a username and password.
There are several ways to handle this. The most complete is to develop a custom login and use encryption, such as Secure Socket Layer (SSL). Here usernames and passwords are kept in a secure database, often with encryption. And they are sent over a secure network. This level of security is necessary for financial sites such as banks and brokerage houses.
Other sites require security only when final ordering information, including credit card numbers, is gathered. Up until that point, shoppers or other visitors are free to investigate the site. Some also have registration and login requirements for visitors. These are also usually custom designed.
But a web application can also have levels of security so that, for example, managers could have greater access to web pages than clerks. This can be built into the application using web.xml, the web application deployment descriptor. The Tomcat server can have roles assigned to different users so that a manager’s role would have greater access than a clerk’s role.

tomcat-users.xml
The file, tomcat-users.xml, is contained in the conf folder of Apache Tomcat. It allows the manager of the server to set up roles for clients.

<?xml version='1.0' encoding='utf-8'?>

<tomcat-users>

<role rolename="tomcat"/>

<role rolename="role1"/>

<role rolename="store_clerk"/>

<role rolename="store_manager"/>

<user username="tomcat" password="tomcat" roles="tomcat"/>

<user username="both" password="tomcat" roles="tomcat, role1"/>

<user username="role1" password="tomcat" roles="role1"/>

<user username="store_clerk" password="clerk" roles="store_clerk"/>

<user username="Alice Lee" password="alee" roles="store_manager"/>

<user username="Diana Chen" password="dchen" roles="store_clerk"/>

</tomcat-users>
The store_manager and store_clerk roles have been added here. They were not in the original file. With this addition, the store manager and store clerk will have access to web pages that someone, who is not a manager or clerk will not. However, they must know their passwords. (The passwords shown here are clearly inadequate.)
web.xml
For the manager to be recognized by the web application, several elements should be added to web.xml. These are added at the end, after the error-page tags.

<web-app>

…

<servlet>

<servlet-name>org.apache.jsp.manager_jsp</servlet-name>

<servlet-class>org.apache.jsp.manager_jsp</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>org.apache.jsp.manager_jsp</servlet-name>

<url-pattern>/manage/*</url-pattern>

</servlet-mapping>

…
<error-page>

<error-code>404</error-code>

<location>/notfound.html</location>

</error-page>
<!-- The Security Constraint for this Application. -->

<security-constraint>

<web-resource-collection>

<web-resource-name>Application Manager</web-resource-name>

<url-pattern>/ manage /*</url-pattern>

<http-method>POST</http-method>

<http-method>GET</http-method>

</web-resource-collection>

<auth-constraint>

<role-name> store_manager</role-name>

<role-name> store_clerk</role-name>

</auth-constraint>

</security-constraint>

<security-role>

<role-name>store_manager</role-name>

</security-role>

<security-role>

<role-name>store_clerk</role-name>

</security-role>

<!-- The Login Configuration for this Application -->

<login-config>

<auth-method>FORM</auth-method>

<realm-name>EStore Application Manager</realm-name>

<form-login-config>

<form-login-page>/login.jsp</form-login-page>

<form-error-page>/error.jsp</form-error-page>

</form-login-config>

</login-config>
The web-resource-collection contains the servlets or JSP files that will be constrained. Here there is only one, manager.jsp. The <auth-constraint> provides the role names of the clients that will have access to these servlets. It makes sense to have the manager page be a JSP file. Everything in the root directory of the application is available to the public, while all folders under that directory are not. Making the manager page into a JSP file rather than an HTML file, means that after it has been compiled, it can be removed from the root folder. Since any HTML file can also be saved as JSP, this is a way of protecting the page from unauthorized viewers.
. Something similar to the following code should be placed in the index file.

<form method = "post" action="../application_name/ manage">

<input type = "submit" value = "Manager Login" /></td>

</form>
There are two kinds of login configurations. The one below is for a login form. The names used in the form are defined by the server. The action value must be j_security_check, the username, j_username, and the password, j_password. The login form looks like the following after Diana Chen enters her username and password.

[image: image1]
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<link rel='stylesheet' type='text/css' href='estyles.css' />

<html>

<head><title>Login Page for E Store</title></head>

<body>

<form method="post" action='<%= response.encodeURL("j_security_check") %>' >

<p>Username <input type="text" name="j_username">

Password <input type="password" name="j_password"></p>

<p><input type="submit" value="Log In">

<input type="reset"></p>

</form>

</body></html>
If the login is incorrect, error.jsp will be displayed.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<link rel='stylesheet' type='text/css' href='estyles.css' />

<html>

<head><title>Login Error Page</title></head>

<body>

<h3>Invalid username and/or password, please try

<a href='<%= response.encodeURL("login.jsp") %>'> again.</h3>

</body>

</html>
The file, manager.jsp, is used to display forms that the manager can use to find and change values. It appears below.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<link rel='stylesheet' type='text/css' href='estyles.css' />

<html>

<head>

<title> Manager JSP. </title>

<script language="Javascript">

<!--

function MakeChoice ()

{

window.open ("org.apache.jsp.change_jsp", "choiceWindow", "width=400, height=300");

}

//-->

</script>

</head>

<body>

<table>

<caption><h1>Store Manager</h1></caption>

<tr>

<td>

<h3>Display the products.</h3>

<form method="get" action="../estore/display">

<p><input type="submit" value="Display" /></p>

</form>

</td>

<td>

<h3>Find a product.</h3>

<form method="get" action="../estore/find">

<p><input type="text" name="name" value="" size="20" /> Name </p>

<p><input type="submit" value="Find" /></p>

</form>

</td>

<td>

<h3>Insert a new products.</h3>

<form method="get" action="../estore/insert">

<p><input type="text" name="id" value="" size="20" /> ID

<input type="text" name="name" value="" size="20" /> Name

<input type="text" name="quantity" value="" size="20" /> Quantity

<input type="text" name="price" value="" size="20" /> Price </p>

<p><input type="submit" value="Insert" /></p>

</form>

</td>

</tr>

<tr>

<td>

<h3>Update a Field</h3>

<form name="ChoiceForm">

<input type="submit" value="Update" onClick="MakeChoice ()"/>

</form>

</td>

<td>

<h3>Delete a product.</h3>

<form method="get" action="../estore/delete">

<p><input type="text" name="id" value="" size="20" /> ID </p>

<p><input type="submit" value="Delete" /></p>

</form>

</td>

</tr>

<table>

</body> </html>
Tomcat will also provide its own form if web.xml contains the following:

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>EStore Application Manager</realm-name>

</login-config>
Using this gives you less control over the appearance of the page. Both forms encrypt the username and password, but the encryption is very weak.

More for web.xml
In addition to the security constraint described above, web.xml allows you to designate particular pieces of code in a servlet or bean that are to be protected. While clerks may be given permission to do a number of things, they probably are not allowed to change prices. We can put a constraint on the code that does the price change in the web.xml file.

<servlet>

<servlet-name>org.apache.jsp.change_jsp</servlet-name>

<servlet-class>org.apache.jsp.change_jsp</servlet-class>

<security-role-ref>

<role-name>mgr</role-name>

<role-link>store_manager</role-link>

</security-role-ref>

<security-role-ref>

<role-name>clerk</role-name>

<role-link>store_clerk</role-link>

</security-role-ref>

</servlet>
The role-name and role-link entries allow for different names to be used in the servlet or bean and the

<auth-constraint> entry. Here "mgr" will be used in the servlet or bean while "store_manager" is used in the authentication constraint entry. The servlet or bean can ask whether a user is in the role of a manager or a clerk. It can them differentiate between what each is allowed to do.

The code that checks for the role is

boolean mgr = request.isUserInRole ("store_manager");
If the user that logged in was listed as a store_manager, the transaction will be allowed. Otherwise it will not be authorized.
package manager;

import java.sql.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

//
ChangeBean finds a specific product and changes the name, quantity, or price.

public class ChangeBean

{

private String id, name, field, update;

private int quantity, success;

private double price;

public String getId() {return id;}

public String getName() {return name;}

public int getQuantity() {return quantity;}

public double getPrice() {return price;}

public int getSuccess () {return success;}

public void setId (String i) {id = i;}

public void setName (String n) {name = n;}

public void setQuantity (int q) {quantity = q;}

public void setPrice (double p) {price = p;}

public void setField (String f) {field = f;}

public void processRequest (HttpServletRequest request)

{

try

{

// Get a jdbc-odbc bridge and connect to the grocery database.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:estore");

Statement stmt = con.createStatement ();

// This checks whether the user is a store manager. It protects the price change only.

boolean mgr = request.isUserInRole ("store_manager");

if (field.equals("name"))

update = "Update products Set name = '" + name

+ "' Where id = '" + id + "'";

else if (field.equals("quantity"))

update = "Update products Set quantity = " + quantity

+ " Where id = '" + id + "'";

else if (mgr && field.equals("price"))
// This part of the code is protected.

update = "Update products Set price = " + price

+ " Where id = '" + id + "'";

else update = null;

// If the update has been authorized, the statement may be executed.

if (update != null)

success = stmt.executeUpdate (update);

else success = 0;

if (success > 0)

{

stmt = con.createStatement ();

String query = "Select * From products Where ID = '" + id + "'";

ResultSet rs = stmt.executeQuery (query);

rs.next ();

id = rs.getString ("id");

name = rs.getString ("name");

quantity = rs.getInt ("quantity");

price = rs.getDouble ("price");

}

stmt.close ();

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.");}

 catch (SQLException e){System.out.println ("SQL Exception");}

}

} // class ChangeBean

As you can see, Tomcat provides some security for an application or even for particular lines of code in an application. The username and password are encrypted when you use the special login form, but this is very weak encryption. For a real store, particularly one that operates over the Internet, the company should invest in SSL. SSL uses public key encryption, and the key must be registered with some company such as Verisign.

Verifying and Changing Passwords
If an application requires a user to have a password to access information, it will have to verify that the password is correct and also allow the user to change the password. Assuming that passwords are kept in a database table called PasswordTable, the code for verifying and changing passwords is straightforward.

To verify a password, the application must have a login page. The following is a page with a login form. Note that the type of the second input statement is password, not text. Input boxes with type password show only stars on the screen, not the actual characters typed in. The method should always be post rather than get. Post data is sent with the packet and not in the URL string.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head> <title>Logon Page</title> </head>

<body>

<h4>Enter your username and password.</h4>

<form method = "post" action = = "../estore/verifyPassword">

<input name="username" type="text" value="" size="10" /> Username

<input name="password" type="password" value="" size="10" /> Password

<p><input type="submit" value="Logon"></p>

</form>

</body>
</html>
A servlet that verifies that this username and password is in the database follows.

/*
VerifyPasswordServlet checks a username and password to see if it is in the database.*/

package customers;

import java.sql.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/*
VerifyPasswordServlet gets the username and password from the request. It then checks to see if the password is correct. If so, it displays the data about the customer. If not, it responds with an error message. */

public class VerifyPasswordServlet extends HttpServlet

{

public void doPost (HttpServletRequest request, HttpServletResponse response)

{

try

{

PrintWriter out = response.getWriter ();

// Get a jdbc-odbc bridge and connect to addresses.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:estore");

Page.createHeader (out, "Customer Password");

String username = request.getParameter ("username");

String password = request.getParameter ("password");

String id = checkPassword (out, con, username, password);

if (id != null)
out.println ("<h4>Password verified</h4><p>");

else

out.println ("<h4>Password error. Click on the Back button and re-enter.</h4>");

Page.createFooter (out);

con.close ();

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.");}

 catch (SQLException e){System.out.println ("SQL Exception");}

 catch (IOException e) {System.out.println ("IO Exception");}

} // doPost

/* checkPassword checks the database to see if the username and password match the data in the password table. */

private String checkPassword (PrintWriter out, Connection con, String username, String password)

{

try

{

Statement stmt = con.createStatement ();

String query = "Select * From PasswordTable Where Username = '" + username + "'";

ResultSet rs = stmt.executeQuery (query);

if (rs.next () && rs.getString ("Password").equals (password))

 return rs.getString ("ID");

} catch (SQLException es) {System.out.println ("SQL Password Exception");}

return null;

} // checkPassword
} // class VerifyPasswordServlet

Users should also have the option of changing their passwords. This requires a form that contains boxes for both the old and the new passwords.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head> <title>Change Password Page</title> </head>

<body>

<h4>Enter your username and password.</h4>

<form method = "get" action = "../estore/changePassword">

<input name="username" type="text" value="" size="10" /> Username

<input name="oldpassword" type="text" value="" size="10" /> Old Password

<input name="newpassword" type="text" value="" size="10" /> New Password
<p><input type="submit" value="Change Password"></p>

</form>

</body>

</html>
Again the servlet has to go into the password table and find the user. But this time it not only has to check that the old password is in the table, but it must also update the table with the new password.

//
ChangePasswordServlet is used to change a password in the password table.
package customers;

import java.sql.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/*
ChangePasswordServlet allows a user to change his/her password so long as the customer is in the database. */

public class ChangePasswordServlet extends HttpServlet

{

public void doPost (HttpServletRequest request, HttpServletResponse response)

{

try

{

PrintWriter out = response.getWriter ();

// Get a jdbc-odbc bridge and connect to addresses.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:estore");

Page.createHeader (out, "Change Password");

changePassword (out, con, request);

Page.createFooter (out);

con.close ();

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception\n");}

 catch (IOException e) {System.out.println ("IO Exception");}

} // doPost

// changePassword locates a username in the database and changes the password.

public void changePassword (PrintWriter out, Connection con, HttpServletRequest request)

{

String username = request.getParameter ("username");

String oldpassword = request.getParameter ("oldpassword");

String newpassword = request.getParameter ("newpassword");

try

{

Statement stmt = con.createStatement ();

String query = "Select * From PasswordTable Where Username = '" + username + "'";

ResultSet rs = stmt.executeQuery (query);

if (rs.next ())

{

String id = rs.getString ("ID");

if (!oldpassword.equals (rs.getString ("Password")))

out.println ("<h4>The old password is incorrect.</h4>");

else

{

stmt = con.createStatement ();

query = "Update PasswordTable Set Password = '" + newpassword
+ "' Where ID = '" + id + "'";

int success = stmt.executeUpdate (query);

if (success == 0) out.println ("Update error.");

else out.println ("<h4>Password Changed.</h4>");

stmt.close ();

}

}

else out.println ("The username is not in the table.");

} catch (SQLException es) {System.out.println ("SQL Exception");}

} // changePassword

} // class ChangePasswordServlet

Reference

1. Karl Moss, Java Servlets Developer’s Guide, chapters 4 and 5, McGraw-Hill/Osborne, 2002.

�

PAGE
1

[image: image2.emf]

