Sharing Data among Servlets

A Java application is usually in the form of a tree, with a main class as the root. This class instantiates other classes and often sends data to them as parameters in their constructors. The instance data in the main class act as global data and can be shared by the other classes in the application. Instance data can also be made public (not recommended) or made available using get and set methods.

A web application, on the other hand, consists of a collection of web pages, servlets, and Java server pages. These ordinarily do not communicate. However, Java supplies an interface called ServletContext.
 It can be used by one servlet to store data that can be accessed by other servlets. The data is stored with a key, and any other servlet knowing that key can access it.

Storing a Database Connection
A common use is to store a database connection. Getting the driver is a slow process, so storing it in a place accessible to all servlets can save time. The ServletContext is accessed using

ServletContext application = getServletContext ();
To store something in the ServletContext, you need a key. The method call is

application.setAttribute (ConnectionKey, con);
Finally, for another servlet to access the connection, it uses a get method:

ServletContext application = getServletContext ();

Connection con = (Connection) application.getAttribute (ConnectionKey);

Note that the result must be cast (type changed) to a Connection.

An application can have a servlet just for getting the connection. It only contains an init method, since it does not interact with the browser, but only with the database and the ServletContext. The deployment descriptor should list this servlet and include <load-on-startup>1</load-on-startup>.

<servlet>

<servlet-name>ConnectionServlet</servlet-name>

<servlet-class>store.ConnectionServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>
The tag, <load-on-startup>, is used to tell the server to load (and execute) this servlet when the application is loaded.
 Thus the connection will be established before any other servlet needs to use it. Clearly, other servlets should not close the connection. That can be done by a second servlet when the application is finished.

The following is an example of a servlet that can be used to get the connection.

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

/*
The init method of the ConnectionServlet gets a database connection and stores it in the ServletContext. */

public class ConnectionServlet extends HttpServlet

{

public final String ConnectionKey = "estore.database";

public final String JDBCConnectionURL = "jdbc:odbc:estore";

public void init ()

{

Connection con = null;

try

{

// Get a jdbc-odbc bridge and connect to the database.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

con = DriverManager.getConnection (JDBCConnectionURL);

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

ServletContext application = getServletContext ();

application.setAttribute (ConnectionKey, con);

} // init

} // ConnectionServlet
A servlet that uses the ServletContext to get the connection follows:

/*
DisplayServlet gets data from a database and sends a copy

of the data to the client in a second web page.*/

package orders;

import java.sql.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/*
DisplayServlet gets the data from the database and displays it on the output page. */

public class DisplayServlet extends HttpServlet

{

public final String ConnectionKey = "estore.database";

public void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

// Get the database connection from the ServletContext.

ServletContext application = getServletContext ();

Connection con = (Connection) application.getAttribute (ConnectionKey);

// Set the content type, get a PrintWriter object, and write the header.

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

Page.createHeader (out, "Products");

// Create a query and display the data.

Statement stmt = con.createStatement ();

String query = "Select * From products";

ResultSet rs = stmt.executeQuery (query);

// Display the title for the table.

out.println ("<h3>Products</h3>");

out.println ("<table>");

// Display the column names in the first row.

out.println ("<tr><td>id</td><td>name</td><td>quantity</td><td>price</td></tr>");

// Display all the data in the table.

while (rs.next ())

{

out.println ("<tr><td>"+rs.getString("id")+"</td>");

out.println ("<td>"+rs.getString("name")+"</td>");

out.println ("<td>"+rs.getInt("quantity")+"</td>");

out.println ("<td>"+rs.getDouble("price")+"</td></tr>");

}

out.println ("</table>");

stmt.close ();

Page.createFooter (out);

} catch (IOException ex) {System.out.println ("<h3>IO Exception.</h3>");}

catch (SQLException es) {System.out.println ("SQL Exception");}

} // doGet

} // class DisplayServlet
References

1. Susan Anderson-Freed, Weaving a Website, Prentice Hall, 2002.

2. H.M. Deitel, P.J. Deitel, and T.R. Nieto, Internet & World Wide Web, How to Program, 2nd Edition, Prentice Hall, 2002.

3. Marty Hall & Larry Brown, Core Servlets and Java Server Pages, First Edition, Sun Microsystems Press/Prentice-Hall PTR Book, 2003.

4. Elliotte Rusty Harold, Java Network Programming, O’Reilly & Associates, Inc., 2000.

5. Karl Moss, Java Servlets Developer’s Guide, McGraw-Hill/Osborne, 2002.

6. Dave Raggett , A History of HTML, Chapter 2, Addison Wesley Longman, 1998, http://www.w3.org/People/Raggett/book4/ch02.html.

7. W3Schools Online Web Tutorials, http://www.w3schools.com.

� The ServletContext is always instantiated when a Java server page is compiled. It is given the name, application. Therefore do not declare the ServletContext in a JSP. Instead just use application when referring to it. This is similar to the way that JSPs handle request and response.

� The deployment descriptor does not need a servlet mapping, since it is not accessed from the browser.

PAGE
1

