Document Type Definitions

A Document Type Definition (DTD) for an xml file is a list of elements (tags) used in the file, together with some information about how they are defined. The document must have a single root node. This is followed by the children of the root and either their children or data type. In a DTD there are only two data types, PCDATA (parsed character data) or CDATA, unparsed character data. Most of the examples use parsed character data.

A DTD also indicates how many times an element can occur in the file. The default is once. But most files use the same tag names a number of times. The notation used is similar for that used in regular expressions.

· * means zero or more occurrences.

· + means one or more occurrences.

· ? means zero or one occurrence.

A DTD also allows for choice. A vertical bar (|) is used to indicate one element or another.

A DTD for the Address Example

A DTD for the address example on page 3 might be:

<!ELEMENT address (name, email, phone, birthday)>

<!ELEMENT name (first, last)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT birthday (year, month, day)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT month (#PCDATA)>

<!ELEMENT day (#PCDATA)>

This says that address is the root of the document. It has four children: name, email, phone, and birthday. The element name also has two children, first and last. And the element birthday has three children, year, month, and day. All the rest of the elements consist of PCDATA, parsed character data.

If the above definitions are contained in a file called address.dtd, the following declaration should be added to the top of the xml file.

<!DOCTYPE address SYSTEM "address.dtd">

This assumes that the file, address.dtd, is in the same folder as the xml file. This is the best way to handle finished DTDs.
However when developing a DTD, it is more convenient to have it in-line. In that case, the entire DTD is placed at the top of the xml file enclosed by <!DOCTYPE address […]>. The entire in-line example for the preceding xml file follows.

<?xml version="1.0" encoding="UTF-8" standalone ="no"?>
<!DOCTYPE address [

<!ELEMENT address (name, email, phone, birthday)>

<!ELEMENT name (first, last)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT birthday (year, month, day)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT month (#PCDATA)>

<!ELEMENT day (#PCDATA)>

]>

<address>

<name>

<first>Alice</first>

<last>Lee</last>

</name>

<email>alee@aol.com</email>

<phone>123-45-6789</phone>

<birthday>

<year>1983</year>

<month>07</month>

<day>15</day>

</birthday>

</address>
This is a valid document. That means that the XML file is an instance of the DTD and adheres to all its requirements. Documents can be validated using an XML parser. Parsers are programs that read the document and verify its tree structure. In addition, the parser can determine whether or not the document is valid.

The above document was validated by a parser made available by the Refsnes Data Company of Norway, a web consulting firm. They have a web site, http://www.w3schools.com/ , that features a number of excellent tutorials on web development. A parser called Xerces is also available from the
Apache Software Foundation at http://www.apache.org/. It will be discussed later.

Most web browsers will also parse XML files. If no layout information is provided, they display the tree structure of the document. The hyphens can be used to collapse the tree. When collapsed, the hyphens are replaced by plus signs. Clicking on these opens up the tree again. The following shows the address example as displayed by the Firefox browser from Mozilla.

[image: image1]
A Grocery Store Example

Another example could be used to describe some products at a grocery store. It contains fields for a product’s name, id, quantity, and price. These must be included, but the number of entries for each type of product may vary. It also contains a heading that can be used when displaying the document using CSS. A DTD for this example follows:

<!-- A document type definition for grocery.xml. -->

<!ELEMENT grocery (heading+, fruit*, vegetables*, bakery*)>
<!-- The elements that have children. -->
<!ELEMENT heading (name, id, quantity, price)>

<!ELEMENT fruit (name, id, quantity, price)>

<!ELEMENT vegetables (name, id, quantity, price)>

<!ELEMENT bakery (name, id, quantity, price)>
<!-- Definition of the data types. -->
<!ELEMENT name (#PCDATA)>

<!ELEMENT id (#PCDATA)>

<!ELEMENT quantity (#PCDATA)>

<!ELEMENT price (#PCDATA)>

From this DTD you can see that the root element is <grocery>. This element has four different kinds of children. There can be zero or one heading. The DTD also indicates that there can be zero or more fruit, vegetables, and bakery elements. But it also mandates that all fruit elements come first, vegetable elements next, and bakery elements last.

A file that satisfies all these requirements follows:

<?xml version="1.0" encoding="UTF-8" standalone ="no"?>
<!DOCTYPE grocery SYSTEM "grocery.dtd">
<!--

An xml file that shows names, ids, quantities, and prices of fruit, vegetables, and bakery items.

-->

<grocery>

<heading>

<name>Name</name>

<id>ID</id>

<quantity>Quantity</quantity>

<price>Price</price>

</heading>

<fruit>

<name>apples</name>

<id>A123</id>

<quantity>25</quantity>

<price>1.25</price>

</fruit>

<fruit>

<name>pears</name>

<id>P234</id>

<quantity>50</quantity>

<price>2.55</price>

</fruit>

<vegetables>

<name>beans</name>

<id>B345</id>

<quantity>10</quantity>

<price>.85</price>

</vegetables>

<vegetables>

<name>corn</name>

<id>C456</id>

<quantity>60</quantity>

<price>.50</price>

</vegetables>

<bakery>

<name>bread</name>

<id>B567</id>

<quantity>15</quantity>

<price>2.30</price>

</bakery>

<bakery>

<name>cake</name>

<id>C678</id>

<quantity>4</quantity>

<price>4.25</price>

</bakery>

</grocery>
A Cascading Style Sheet for the Grocery Example

A Cascading Style Sheet (CSS) can also be used to display the xml file in another way. The following link must be added to the beginning of the xml file.

<?xml-stylesheet type="text/css" href="grocery.css"?>
Some browsers will use this information to display the file while others will ignore it. Both Firefox and Netscape version 7.2 use the style sheet for display, while Internet Explorer version 6.0 does not.

The following style sheet will display the document in a table.

/* Style sheet for address application. */

grocery

{

font-family: "Times New Roman", serif

display: table;

border-style: solid;

border-width: thin;

margin-left: 1.0cm;

margin-top: 1.0cm;
}

heading, fruit, vegetables, bakery

{

display: table-row;

}

name, id, quantity, price

{

display: table-cell;

border-style: solid;

border-width: thin;

padding: 0.3cm;

text-align: center;

}
If this style sheet is applied, the display looks like the following in Firefox.

[image: image2.emf]

This style sheet says that the root element, grocery, should be displayed as a table.

display: table;
The other styles determine the font and table properties such as a solid, thin border and 1 cm margins.

The columns of the table are given by the next elements, heading, fruit, vegetables, and bakery. The style for these is display: table-row. This will display these elements as rows.

Finally the data elements, name, id, quantity, and price, will be displayed in the table cells.

display: table-cell;
The cell styles must also have instructions as to how the borders should appear.

There are many other applicable styles. W3Schools has an extensive list in their tutorial on CSS.

Attributes and DTDs

XML tags may include attributes. These are name-value pairs such as standalone="no". They can be used in XML and are required in some places. An example might be the following XML file that contains information about students in a course. Each exam grade has a weight attribute to indicate how it should factor into the course grade.
<?xml version="1.0"?>

<!DOCTYPE roster SYSTEM "roster.dtd">

<roster>

<student>

<name>

<first>Alice</first>

<last>Lee</last>

</name>

<midterm weightMidterm = "40">85</midterm>

<final weightFinal = "60">92</final>

</student>

<student>

<name>

<first>Barbara</first>

<last>Smith</last>

</name>

<midterm weightMidterm = "40">78</midterm>

<final weightFinal = "60">84</final>

</student>

<student>

<name>

<first>Cathy</first>

<last>Jones</last>

</name>

<midterm weightMidterm = "40">82</midterm>

<final weightFinal = "60">87</final>

</student>

</roster>

Attributes must also be listed in the DTD for the document. They are defined in an attribute list given by an ATTLIST definition. A DTD for this example follows.

<!-- A document type definition for roster.xml. -->
<!ELEMENT roster (student+)>

<!-- Each student must have midterm and final grades.. -->
<!ELEMENT student (name, midterm, final)>

<!ELEMENT name (first, last)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT midterm (#PCDATA)>

<!ELEMENT final (#PCDATA)>
<!-- The midterm and final attributes consist of CDATA with a default value of "0". -->
<!ATTLIST midterm weightMidterm CDATA "0">

<!ATTLIST final weightFinal CDATA "0">

While there are only two datatypes for elements, PCDATA and CDATA, there are quite a few for attribute lists. To learn about the others types, see the references.

XML Schema

Both Schema and Document Type Definitions (DTDs) are used to make sure that those that use the documents agree on their contents and form. DTDs were developed first. They define the tree structure of a document, but they only provide two data types, CDATA and PCDATA. This was fine when XML was primarily used for marking up documents, such as books and articles. Most of that content consists of character data.

However, now XML is widely used to interchange data from files and databases. These documents can have a number of data types other than strings, including integers, decimals, dates and booleans. Also, a schema is itself an XML document. The recommendations for schemas
 only date from May 2001, but they are now probably more widely used than DTDs. Some people are suggesting that DTDs be retired in favor of schemas.

Schemas, like DTDs, are used to validate a document. A parser that can be used for validation with either a schema or DTD is available from the Apache Software Foundation.
 It is open source and is called Xerces. A sample program called Writer.java comes with it.
 It was written by Andy Clark at IBM and supplied by IBM to Apache.

If an XML document is valid, Writer will simply echo it on the console screen. However, if there is an error, it will first point it out and then echo the document. As with all such software, some of the error messages are easier to understand than others. When you are developing a schema for an XML document, it is wise to check it regularly for validity. Schemas are complicated, so errors are common.

Namespaces

Before discussing schemas, it is necessary to explain what a namespace is in XML. A namespace is used to make a distinction between items with the same name but different meanings. The most common example is that of a ‘table’, which could refer to either an html table or a piece of furniture.

In order to keep the meanings straight, a prefix is added to the beginning of the tag. In another example, we could have h:form for an html form and m:form a for medical form. The entire name is said to be the qualified name. It consists of the prefix and the local part. Since XML tag names may contain only a single colon, the local part must be colon free.

Namespaces are described by a Uniform Resource Identifier (URI). The identifier doesn’t actually have to point to a real web page, but it is preferable that it do so. The page only needs to have some explanation about the uses for the prefix. The main one that we will use is

xmlns:xs="http://www.w3.org/2001/XMLSchema"
This is the namespace for XML schema. The prefix is "xmlns", which stands for xml namespace.

For the form example above, we could have namespaces

xmlns:m="http://csis.pace.edu/~wolf/medical/"

and

xmlns:h="http://www.w3.org/TR/html4/"
The latter is a real website, the W3C HTML 4.01 Specification. However there is no medical folder on my website. If you try to link to it, you will get a Not Found page.

If you put a namespace attribute in a tag, all its children will inherit it. This way you do not have to add the prefix to every tag. This provides a default namespace for the tag and its children.

<form xmlns="http://csis.pace.edu/~wolf/medical/">

<doctor>Dr. Stein</doctor>

<patient>Alice Lee</patient>
</form>

Simple Address Example

The first address example we used had one root with four children. It is repeated below.

<?xml version = "1.0" ?>

<address>

<name>Alice Lee</name>

<email>alee@aol.com</email>

<phone>123-45-6789</phone>

<birthday>1983-07-15</birthday>
</address>
It might represent a row in a database. We previously saw a DTD that described it. The following schema does also. Note the first two lines of the schema. They are standard and must be copied exactly as is into the document.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="address">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="email" type="xs:string"/>

<xs:element name="phone" type="xs:string"/>

<xs:element name="birthday" type="xs:date"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

This looks more complicated than the DTD. But it also contains more information. It says that address is an element, that its type is complex, and that the elements called name, email, phone, and birthday must occur in the order shown. If <xs:sequence> had been left out, the four elements could appear in any order, but they would all have to be there. Also while three of the elements are strings, the fourth is a date. Date fields in XML are of the form yyyy-mm-dd. If they are not in this form, they are not valid.

Also since a schema is an XML document itself, it can mirror the form of the document it describes. The one above shows that address is the root node and that name, email, phone, and birthday are its children. This schema also says that each element must occur once and only once. The default is exactly once. This can be changed by adding a constraint to an element.

<xs:element name="phone" type="xs:string" maxOccurs="unbounded"/>
This says that there may be one or more phone numbers listed. There must be at least one, however. To change that, we would have to add another constraint, minOccurs="0".

An XML document is known as an instance of the schema. To use the schema, the document must contain a link to it. This is put into the root tag.

<address

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="address.xsd">
Notice that it not only identifies the W3C site for schema, but it also indicates that this is an instance of that schema. Since namespaces are not used inside this document, it says that the location of the schema is in xsi:noNamespaceSchemaLocation. If a namespace had been used, this would change to xsi:schemaLocation.

Schemas are not unique. Another one for address.xml uses a reference in one element to another element. Thus the address element has references to the name, email, phone, and birthday elements. This can be used to divide the schema into manageable parts. Note that comments follow the usual rules for html and xml.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- Definition of simple elements. -->

<xs:element name="name" type="xs:string"/>

<xs:element name="email" type="xs:string"/>

<xs:element name="phone" type="xs:string"/>
<xs:element name="birthday" type="xs:date"/>

<!-- Definition of complex elements. -->

<xs:element name="address">

<xs:complexType>

<xs:sequence>

<xs:element ref="name"/>

<xs:element ref="email"/>

<xs:element ref="phone" maxOccurs="unbounded"/>

<xs:element ref="birthday"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
Dividing the elements up this way will make it easier to handle more complicated xml documents.

Attributes in Schema

The XML document that described a class roster contained attributes for exam weights. As in DTDs, attributes are treated separately by schemas. An element with an attribute has a complex type and is not listed the same way as a simple element.

The midterm and final both have attributes and so are considered complex types. First, they are extensions of a simple base type, xs:positiveInteger. The attributes themselves are simple types, so they contribute simple content to the element. This part of the schema looks as follows:

<xs:element name="midterm">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:positiveInteger">

<xs:attribute ref="weightMidterm"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>
The following is a schema for roster.xml. It has

1. one simple element: name,

2. two attributes: weightMidterm and weightFinal,

3. a root: roster,

4. a child of the root: student,

5. three children of student: name, midterm, and final.
<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- definition of simple elements -->

<xs:element name="name" type="xs:string"/>

<!-- definition of attributes -->

<xs:attribute name="weightMidterm" type="xs:positiveInteger"/>

<xs:attribute name="weightFinal" type="xs:positiveInteger"/>

<!-- definition of complex elements -->

<xs:element name="midterm">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:positiveInteger">

<xs:attribute ref="weightMidterm"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="final">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:positiveInteger">

<xs:attribute ref="weightFinal"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="student">

<xs:complexType>

<xs:sequence>

<xs:element ref="name"/>

<xs:element ref="midterm"/>

<xs:element ref="final"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="roster">

<xs:complexType>

<xs:sequence>

<xs:element ref="student" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
There is a lot more to know about schema besides the above. For more information, see the References.

References

1. Clark, Andy, Write.java, Xerces version 1.1, 2003.
2. Elliotte Rusty Harold, Processing XML with Java, chapter 17, Addison Wesley, 2002.
3. Elliotte Rusty Harold and Scott Means, XML In a Nutshell, Third Edition, O’Reilly & Associates, Inc., 2004.
4. Raggett, Dave, A History of HTML, Chapter 2, Addison Wesley Longman, 1998, http://www.w3.org/People/Raggett/book4/ch02.html.
5. W3Schools Online Web Tutorials, http://www.w3schools.com.

�

� � HYPERLINK "http://www.mozilla.org/" ��http://www.mozilla.org/�

� Elliotte Rusty Harold and Scott Means, XML In a Nutshell, Third Edition, Chapter 3, O’Reilly & Associates, Inc., 2004.

� � HYPERLINK "http://www.w3.org/XML/Schema" ��http://www.w3.org/XML/Schema�

� � HYPERLINK "http://www.Apache.org" ��http://www.Apache.org�

� A version of Writer.java is on my web site. In order to compile it in JCreator, you will need some .jar files. These are also on the website. Get all five of them, resolver.jar, xercesImpl.jar, xercesSamples.jar, xml-apis.jar, and xmlParserAPTs.jar. You can store them with the other .jar files in your jdk folder. Configure JCreator to find them by adding them to the profile for the Java editor. When you execute the file it will first ask you for an option and the name of the xml file. To validate using a DTD, the option is –v, and to validate using a schema, the option is –s.

� Elliotte Rusty Harold and Scott Means, XML In a Nutshell, Third Edition, Chapter 17, O’Reilly & Associates, Inc., 2004.

PAGE
1

[image: image3.emf]

