Using the Web Server for Three Tier Computing

Three tier computing refers to the three parties to a web transaction. These are the client, the server, and the database. First the client requests a page from the server and downloads it to his or her computer. The client then fills out the form and submits it to the server for processing. The server next reads the action line of the form and locates the processing program. It gets an instance of this program and then starts it. The processing program connects to a database, performs some transaction, and creates a web page to return to the client. The server then sends the web page with the results of the transaction back to the client’s browser.

Since the processing program and the database are both on the server, there are no security issues involved. They are not downloaded to the client, so they cannot disturb files on the client’s computer. And the client cannot access either the processing program or the database. Therefore the processing program may read and write files on the server and access and modify a database.

Accessing a Database from a Web Page

The database we will initially use is that for an address book. The following picture is from an Access database.
 It shows a table called AddressTable with three columns (fields) called Name, Email, and Telephone. It has three rows, each representing a single address (object). It is contained in a database named addresses.mdb.

[image: image5.emf]

An HTML form can be used to send a name to the server. The server can then invoke a processing program to connect to the database and retrieve the email address associated with the name. The names used in the form must be the same as the parameters in the processing program, and the column names used in the processing program must agree with those in the database. It is important that both spellings and cases agree. And it is wise to avoid the use of spaces in table and column names.

The Web Page

The following web page contains only one form. It sends the server the name of a person in the database in order to find the person’s email address. (It could also be used to get the telephone number if desired.)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>E-Mail Form</title></head>

<body>

<h3>To find an email address, enter the name of the person

 and then click the submit button.</h3>

<form method = "get" action="http://localhost:8080/client_server.FindEmailProcessor">

<input type = "text" name = "keyName" size = "15" /> Name

<p><input type="submit" value="Submit" /></p>

</form>

</body>

</html>

[image: image6.emf]

When the submit button is clicked, the URL string that is sent to the server is

GET /client_server.FindEmailProcessor?keyName=Alice+Lee HTTP 1.1

This string is created by the browser and sent to the web address given in the form. In this example it is http://localhost:8080/ where localhost is the local loop. It will access the server on port 8080.

The Java Processing Program

When the server receives the request, it looks in the client_server folder for FindEmailProcessor.class. This is the compiled version of the program below. If the name is in the database, the program will send the following page back to the same browser.

[image: image1]
If the name is not in the database, an error message is returned.

The program must first connect to the database. This is done using a jdbc-odbc bridge.
 Next it must get the requested name from the URL string. This name is used as a key into the database. The data is retrieved by a query string containing the name.

"Select * From AddressTable Where Name = '" + keyName + "'"

Select is a command in SQL (Structured Query Language). The query here says to return all (*) the data in the table called AddressTable where the Name field has the same value as the parameter, keyName.
When the statement is executed, a ResultSet is returned. This object contains a cursor (pointer) that initially points to row 0. Since rows are numbered from 1, this is not a valid row. If a program tries to access anything using the ResultSet at this time, a SQLException will be thrown.

Therefore before getting any data from the ResultSet, the program should invoke the next method. This method returns a boolean value. If the name is not in the database, the value will be false. Otherwise it is true. For this reason, rs.next () can be used as the condition in either a while or an if statement.

The next method also moves the cursor to the next row in the ResultSet. The ResultSet will include all the rows that contain the keyName. Once the next method has been called, the cursor will indicate the first row in the set. And each succeeding call will move it on to the next row. When it finally reaches the end, the value turns back to false. So if rs.next () is the condition in a while loop, it will provide an exit from the loop.

The following program then is used to get the ResultSet and return the email address to the browser. If the name is not in the database, it returns an error message like the one below. Note that it uses the Page class defined on page 9.

[image: image2]
package client_server;

/* FindEmailProcessor is used to find an email address for a person in a database. It finds the name and then returns the person’s email address. */

import java.io.*;

import java.sql.*;

public class FindEmailProcessor extends WebRequestProcessor

{

public void process (Request request, Response response)

{

try

{

// Get a jdbc-odbc bridge and connect to addresses.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

// Get the name from the request.

String keyName = request.getParameter ("keyName");

// Get a PrintWriter and set up the output page.

PrintWriter out = response.getWriter ();

Page.createHeader (out, "Find an Email Address");

// Create a query to the database in order to find the email address.

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable Where Name = '" + keyName + "'";

/* Get the result set and if the name is in the database, get the email address. If not, return

an error message. */.

ResultSet rs = stmt.executeQuery (query);

if (rs.next ())

{

String email = rs.getString ("Email");

out.println ("<h3>The email address for " + keyName + " is " + email + "</h3>");

}

else out.println ("<h3>The name was not found in the database.</h3>");

Page.createFooter (out);

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

} // process

} // FindEmailProcessor

Displaying the Entire Database

We can also display the entire contents of the database. The query string used for this is

Select * From AddressTable

This will return a ResultSet that contains all the rows of the table. A form for this program does not send any data. Instead it only displays a submit button to send the request to the server.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head>
<title>E-Mail Form</title>

</head>

<body>

<h3>To see all the entire Address Book, click the submit button.</h3>

<form method = "get" action="http://localhost:8080/client_server.DisplayAddressProcessor">

<p><input type="submit" value="Submit" /></p>

</form>

</body>

</html>

[image: image3]
Creating an HTML Table
Since a database table consists of rows and columns, an HTML table is often used to display the data. HTML tables consist of rows and columns; the tags for the rows are <tr> … </tr> and for the columns within the rows <td> … </td>. Tables begin with the tag <table> and end with </table>. The opening tag may also contain attributes such as border, cellspacing, and font color.

In addition to the main tags, a table can have a caption that is put between the tags <caption> and </caption>. It also can have a heading row. This is given with the tags <thead> … </thead>. Between these, put <th><td>…</td><td> … </td><td> … </td></th>.

So the HTML for a complete table might look like:

<table border = "1" bordercolor = "#000000" cellspacing = "5">

<caption> … </caption>

<thead> <th><td>…</td><td> … </td><td> … </td></th> </thead>

<tr> <td>…</td><td> … </td><td> … </td> </tr>

…

<tr> <td>…</td><td> … </td><td> … </td> </tr>

</table>

Tables are widely used in HTML to display data in even rows and columns, not just for displaying data from a database.

The Java Processing Program

package client_server;

//
DisplayAddressProcessor is used to display all the data in the database.

import java.io.*;

import java.sql.*;

public class DisplayAddressProcessor extends WebRequestProcessor

{

public void process (Request request, Response response)

{

try

{

// Get a writer for the output page and display the heading.

PrintWriter out = response.getWriter ();

Page.createHeader (out, "Display Addresses");

// Get a jdbc-odbc bridge and connect to addresses.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

// Create a statement that will retrieve all the data in the database.

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable";

ResultSet rs = stmt.executeQuery (query);

// Call a method that will create the table and display the data.

displayAddresses (out, rs);

Page.createFooter (out);

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.");}

 catch (SQLException e){System.out.println ("SQL Exception");}

} // process

// displayAddresses creates an html table, gets the data, and displays it in a table.

protected void displayAddresses (PrintWriter out, ResultSet rs)

{

try

{

// Create the table heading.

out.println ("<table border='1' bordercolor='#000000' cellspacing='5'>");

out.println ("<caption>Address Book</caption>");

out.print ("<thead><tr>");

out.print ("<th>Name</th><th>Email</th><th>Telephone</th>");

out.println ("</tr></thead>");

// Display all the rows in the database.

while (rs.next ())

{

// Display each row of the database.

out.print ("<tr>");

out.print ("<td>" + rs.getString ("Name") + "</td>");

out.print ("<td>" + rs.getString ("Email") + "</td>");

out.print ("<td>" + rs.getString ("Telephone") + "</td>");

out.println ("</tr>");

}

out.println ("</table>");

} catch (SQLException es) {out.println ("SQL Exception");}

} // displayAddresses

} // DisplayAddressProcessor

The resulting table appears below.

[image: image4.emf]

References

1. Marty Hall & Larry Brown, Core Servlets and Java Server Pages, First Edition, Sun Microsystems Press/Prentice-Hall PTR Book, 2003.

2. Elliotte Rusty Harold, Java Network Programming, O’Reilly & Associates, Inc., 2000.

3. Karl Moss, Java Servlets Developer’s Guide, McGraw-Hill/Osborne, 2002.

4. William Stallings, Data & Computer Communications, 6th Edition, Prentice-Hall, Inc., 2000.

5. Cathy Zura, Class Notes for CS 396N, http://matrix.csis.pace.edu/~czura/cs396n/, 2003.

�

�

�

�

� Access is part of the Microsoft Office Suite of programs. It comes with the Professional Edition.

� For information on connecting to a database and accessing the data see Using Java to Manage a Database. This file is in the documents folder of my website at � HYPERLINK "http://csis.pace.edu/~wolf/documents/" ��http://csis.pace.edu/~wolf/documents/�.

PAGE
1

[image: image7.emf]

[image: image8.emf]

[image: image9.emf]

