Web Application Programming Using Java

Web applications are used for a number of different purposes including e-commerce, on-line library access, clubs and associations, and school classes. They consist of a collection of programs and web pages written in Hypertext Markup Language (HTML). The programs can be in a number of computer languages including Java, Visual Basic, Perl, PHP, Python, and more.

Hypertext Markup Language (HTML) was developed by Tim Berners-Lee in 1992
 along with his invention of Hypertext Transfer Protocol (HTTP). Together HTML and HTTP created the World Wide Web. Originally the web was designed to display hypertext
 documents, i.e. documents containing links to other web pages. Consequently HTTP was designed for rapid ‘hops’ from one web page to another.

Because web users were expected to remain a relatively brief time on any one page, HTTP does not maintain a connection for more than a quick page request and server response. It is said to be ‘stateless’. That means that the server does not store information about recent requests. This works very well for web surfing, but it is a problem for web applications that have to track users doing business on a site.

This document will consider ways to create and manage a web application written using Java servlets and Java Server Pages (JSP). We will see how to get a request from the client, process it by either accessing or modifying a database, and then create a response to send back to the client. Setup information for Java, the Apache Tomcat server, and the JCreator IDE (Integrated Development Environment) can be found in an Appendix.

The Client’s Web Page

There are many objects that can be placed on a web page, but the only one of interest for web programming is that of a form. A form is used to collect information from the client and submit it to the server for processing. It contains an action attribute that tells the server what program to use to process the data and a method attribute that shows which method in the program should be called. An example of an action attribute is action="http://localhost:8080/servlet/client-server.EmailServlet/".

The form can collect data in a number of different ways, but the first one we will consider is that of a text box. A text box provides a box on the screen that accepts text input. Whatever the user types into the box can then be submitted to the server by clicking a button.

An example of an HTML page containing a single form is shown below.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>E-Mail Form</title></head>

<body>

<h3>Enter your name and e-mail address.

Then click the Send button to send the data to the server.</h3>

<form method = "get" action="http://localhost:8080/servlet/echo.EmailServlet">

<p><input type = "text" name = "name" value = "" size = 30 /> Name </p>

<p><input type = "text" name = "email" value = "" size = 30 /> E-Mail Address </p>

<p><input type= "submit" value="Send" /></p>

</form>

</body> </html>
The first line, <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">, is a declaration
 that should begin web pages. There are three types of declarations, Transitional, Strict, and Frameset. Strict pages must use Cascading Style Sheets
 (CSS) for all layout information. Transitional pages may still have some tags with styles, such as <body bgcolor="blue">. The Frameset declaration is for all pages that contain a frameset.

The form contains a method attribute, method = "get", and an action attribute,

action="http://localhost:8080/servlet/echo.EmailServlet"
The method attribute tells the server what method to run in the Java servlet given by the action attribute. The method, get, means that the server is to run the doGet method in the servlet. The action attribute tells the server where to find the servlet that will do the processing.

The example action attribute says that the servlet is located on the localhost
. It is to be accessed using port 8080. The name, servlet, in the path tells the server to look in its webapps/ROOT directory. All servlet classes are stored in the classes folder under that folder, but in addition, this servlet is in a package called echo. Finally the name of the servlet is EmailServlet.

The form also contains two text boxes, one called name and the other called email. They are initially empty and have space for 30 characters. The names used for the text boxes must agree exactly with the parameters used in the servlet. Case differences between the form and servlet are a common cause of error. Finally the form has a button with the caption Send. It is used to submit the data in the form to the server.

When the user clicks the submit button, the browser creates a URL string that looks like the following:

http://localhost:8080/servlet/echo.EmailServlet?name=Alice+Lee&email=alee@aol.com
The section that precedes the question mark (?) is taken directly from the action attribute. The rest of the string consists of the data typed in by the user. In this case, the user typed “Alice Lee” into the box for the name and “alee@aol.com” into the box for the email address. (Spaces are replaced by the ‘+’ sign in the string.)

The Servlet

When the form is sent to the server, the servlet named in the URL string is executed. It can request the data from the client and then formulate and send a response. A servlet is a subclass of the abstract class, HttpServlet.
 HttpServlet is contained in the Java packages javax.servlet and javax.servlet.http. These both must be imported into the program. They can be found in an archive called servlet.jar.

HttpServlet has several methods that can be over-ridden. The two most important ones are doGet and doPost. They both have the same parameters, HttpServletRequest and HttpServletResponse. The first of these is used to get the request from the client’s form. The second is used to return a response to the client. The methods, doGet and doPost, throw an IOException and a ServletException. These exceptions must either by caught or re-thrown.
The servlet has to create a response page to send back to the client. This is done using a PrintWriter object. Some of the HTML required is standard and is used in every web page. These lines have been separated out into two methods, createHeader and createFooter. They can either be added to any servlet or put into a separate class. An example of a servlet to echo back the email data is shown below.

package echo;

/* EmailServlet processes a request from a web page. It responds to the request by echoing back the name and email address that was sent in. */

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class EmailServlet extends HttpServlet

{

protected void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

// Set the content type for the output and then get a PrintWriter object.

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

// Get the form data from the request.

String name = request.getParameter ("name");

String email = request.getParameter ("email");

// Write the output header, the output data, and the footer.

createHeader (out, "Test Data");

out.println ("<h3>Hello.</h3>");

out.println ("<h3>" + name+ "</h3>");

out.println ("<h3>Your email address is " + email + "</h3>");

createFooter (out);

}catch (IOException e) {System.out.println ("Servlet Exception");}

} // doGet

// createHeader adds standard HTML lines to the beginning of the output page.

protected void createHeader (PrintWriter out, String title)

{

out.println ("<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'>");

out.println ("<html>");

out.println ("<head>");

out.println ("<title>" + title + "</title>");

out.println ("</head>");

out.println ("<body>");

} // createHeader

// createFooter adds standard HTML lines to the end of the output page.

protected void createFooter (PrintWriter out){out.println ("</body></html>");}

} // EmailServlet
The Web Application Deployment Descriptor

The Web Application Deployment Descriptor, web.xml, is an XML
 document that tells the server where to find the servlets mentioned in the action attributes in HTML forms. Various versions of web.xml come with Apache Tomcat. They are already stored in the directory, ROOT/WEB-INF. However, the simplest one that works is the following:

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app>

<servlet>

<servlet-name>EmailServlet</servlet-name>

<servlet-class>echo.EmailServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>EmailServlet</servlet-name>

<url-pattern>/servlet/echo.EmailServlet</url-pattern>

</servlet-mapping>
</web-app>
The <servlet> tag gives the name of the servlet and its class file. The <servlet-mapping> tag provides a short pattern that can be used to find the class file. For example, instead of

< url-pattern>/servlet/echo.EmailServlet</url-pattern>
we could have

< url-pattern>/servlet/email</url-pattern>.

We would also have to change the action attribute in the form to

action="http://localhost:8080/servlet/email"
The Web Application Deployment Descriptor will be discussed in more detail later.

The three files are stored in separate locations in the Tomcat directory structure.
 The HTML file should be placed in the ROOT directory, the web.xml file in the WEB-INF folder, and the servlet in the classes folder. Once the servlet has been compiled, its class file will be deployed into a subfolder called echo.

At this point you can start the server and run the application. The server is started using startup.bat found in the bin folder. The HTML form is accessed using a web browser such as Internet Explorer or Firefox. Type http://localhost:8080/EmailForm.html into the browser window. When the form is displayed, fill it out and click the Send button. You should see the following response from the server.

[image: image1.png]=lo/x|

¢ 5 80Q0HE

Google Searchi ask ... || Index of jowolfjdo. »
Googl .. | & Thee... | Dwashin.. || Test |n
Hello.
Alice Lee

Your email address is alee@aol.com

Finding an Email Address in a Database

Echoing the input is not very interesting. A more useful application gets the email address from a database given the name. An Access database that stores names, email addresses, and telephone numbers is shown below.

[image: image2.emf]

To connect to the database, we have to get a jdbc-odbc driver. This is done using the Java code

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

Then the program creates a SQL (Structured Query Language) statement, queries the database, and gets a ResultSet. If the ResultSet is not empty, it will contain the address. In order to use SQL, we have to import java.sql into the program. There are also several exceptions that must be caught or re-thrown.

A web application involves three parts, the HTML file, the Java servlet, and the deployment descriptor. Examples for finding an email address given a name follow. The HTML file, FindEmail.html, comes first.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>E-Mail Form</title></head>

<body>

<h3>Enter a name to find an email address.</h3>

<form method = "get" action="http://localhost:8080/servlet/find">

<p><input type = "text" name = "name" value = "" size = 30 /> Name </p>

<p><input type= "submit" value="Send" /></p>

</form>

</body> </html>

Next we have the Java servlet, FindEmail.java. It uses a class called Page. This class contains the methods createHeader and createFooter used before. It can either be stored in the same file as the servlet or in a separate file. If it is stored separately, it should be made public.

package address_book;

/* EmailServlet processes a request from a web page. It responds to the request by echoing back the name and email address that was sent in. */

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

public class FindEmail extends HttpServlet

{

protected void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

// Get a jdbc-odbc bridge and connect to addresses.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

// Set the content type, get a PrintWriter object, and write the header.

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

Page.createHeader (out, "Address Book");

// Get the name parameter from the HTML form.

String name = request.getParameter ("name");

/* Create a statement and execute the query. Since the parameter, name, is a string, it must

be enclosed in quotation marks. */

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable Where Name = '" + name + "'";

// Execute the query and return a ResultSet.

ResultSet rs = stmt.executeQuery (query);

// If the ResultSet is not empty, get the email address and write it to the output page.

if (rs.next ())

{

String email = rs.getString ("Email");

out.println ("<h3>The email address for " + name + " is " + email + "</h3>");

}

else out.println ("<h3>The name was not found in the database.</h3>");

Page.createFooter (out);

} catch (ClassNotFoundException e){System.out.println ("Class Not Found Exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

 catch (IOException e) {System.out.println ("IO Exception");}

} // doGet

} // FindEmail

// The Page class contains standard lines needed for the HTML output page.

class Page

{

public static void createHeader (PrintWriter out, String title)

{

out.println ("<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'>");

out.println ("<html>");

out.println ("<head>");

out.println ("<title>" + title + "</title>");

out.println ("</head>");

out.println ("<body>");

} // createHeader

public static void createFooter (PrintWriter out){out.println ("</body></html>");}

} // class Page
Lastly, we have to add the new servlet into web.xml. In the HTML form, the action attribute was

action="http://localhost:8080/servlet/find"
This means that the url pattern to use is /servlet/find. The new lines to be added to web.xml are shown below.

<servlet>

<servlet-name>FindEmail</servlet-name>

<servlet-class>address_book.FindEmail</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>FindEmail</servlet-name>

<url-pattern>/servlet/find</url-pattern>

</servlet-mapping>
References

1. Susan Anderson-Freed, Weaving a Website, Prentice Hall, 2002.

2. H.M. Deitel, P.J. Deitel, and T.R. Nieto, Internet & World Wide Web, How to Program, 2nd Edition, Prentice Hall, 2002.

3. Marty Hall & Larry Brown, Core Servlets and Java Server Pages, First Edition, Sun Microsystems Press/Prentice-Hall PTR Book, 2003.

4. Elliotte Rusty Harold, Java Network Programming, O’Reilly & Associates, Inc., 2000.

5. Karl Moss, Java Servlets Developer’s Guide, McGraw-Hill/Osborne, 2002.

6. Dave Raggett , A History of HTML, Chapter 2, Addison Wesley Longman, 1998, http://www.w3.org/People/Raggett/book4/ch02.html.

7. W3Schools Online Web Tutorials, http://www.w3schools.com.

� Dave Raggett , A History of HTML, Chapter 2, Addison Wesley Longman, 1998, � HYPERLINK "http://www.w3.org/People/Raggett/book4/ch02.html" ��http://www.w3.org/People/Raggett/book4/ch02.html�.

� The term, hypertext, was coined by Ted Nelson around 1965.

� Solutions include cookies placed on the client’s computer or session IDs encoded into the URL string. Both will be discussed later.

� See the website of the W3C consortium, � HYPERLINK "http://www.w3.org/MarkUp/" ��http://www.w3.org/MarkUp/�, for further information.

� The W3C recommendations are at � HYPERLINK "http://www.w3.org/Style/CSS/" ��http://www.w3.org/Style/CSS/�.

� Localhost is the standard name given to the local loop. It has IP address 126.0.0.1.

� Documentation for HttpServlet can be found at � HYPERLINK "http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpServlet.html" ��http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpServlet.html�.

� servlet.jar does not come with Java. There is a copy on my website in � HYPERLINK "http://csis.pace.edu/~wolf/documents/" ��http://csis.pace.edu/~wolf/documents/�. See the appendix for information on how to add it to the class path in the IDE, JCreator.

� See the document, An Overview of Extensible Markup Language, in � HYPERLINK "http://csis.pace.edu/~wolf/documents/" ��http://csis.pace.edu/~wolf/documents/� for information about XML.

� See the Appendix A for more information about the file structure and file locations.

� See the document, Using Java to Manage a Database, located in � HYPERLINK "http://csis.pace.edu/~wolf/documents/" ��http://csis.pace.edu/~wolf/documents/�. Follow the directions found there to register the database driver with the operating system create and execute queries.

PAGE
8

