Update Queries

Select queries are used to extract information from a database table. The update queries: Insert, Delete, and Update, all modify the table in some way. Insert adds a new row to the table, Delete removes a row, and Update changes one or more of the fields.

Instead of stmt.executeQuery (query), the update queries use stmt.executeUpdate (query). Where executeQuery returns a ResultSet, the method, executeUpdate returns an integer value. If the update is successful, the method returns the number of rows affected (the row count). Otherwise it returns 0.

Insert

The insert query is used to add a row to the database. An example that adds a row to the fruit table is

String query = "Insert into fruit Values ('P456', 'Pears', 35, 2.25)";
The first two fields are strings and are surrounded by quotes. The fields, quantity and price are numeric, so they do not have quotes around them. A picture of the table after the insertion is shown below.

[image: image1]
When the data are given by variables, the typical situation, the quotes have to be separately included in the query. This is a common source of errors. For the example above, the resulting query looks like the following:

String query = "Insert Into fruit Values ('" + id + "', '" + name + "', " + quantity + ", " + price + ")"
Note the placement of single quotes inside of double quotes for the strings, id, and name, and the absence of single quotes for quantity and price.

The insert statement returns an integer value that is 0 if the update failed and is the number of rows inserted if it succeeded. Since we normally insert just one row, it will be 0 if nothing is done and 1 if the data is inserted properly.

The following is a program that reads data from the keyboard and then inserts it into the database. The data is stored in the database either after the connection has been closed or a select query performed.

import java.util.Scanner;

import java.sql.*;

// InsertFruit prompts for data from the keyboard and then stores it in a row in the table.
public class InsertFruit

{

static Scanner keyboard = new Scanner (System.in);

// Insert a new product into the database.

public static void main (String [] args)

{

try

{

// Get a jdbc-odbc bridge and connect to grocery.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Get the new data.

System.out.print ("ID: ");

String id = keyboard.nextLine ();

System.out.print ("Name: ");
String name = keyboard.nextLine ();

System.out.print ("Quantity: ");
int quantity = keyboard.nextInt ();

System.out.print ("Price: ");

double price = keyboard.nextDouble ();

// Create Insert query statement.

Statement stmt = con.createStatement ();

String query =

"Insert Into fruit Values ('" + id + "', '" + name + "', " + quantity + ", " + price + ")";

// Execute update query.

int success = stmt.executeUpdate (query);

// Report whether or not the update was successful.

if (success == 0) System.out.println ("Insert error.");

else System.out.println ("Data inserted.");

con.close ();
// Close the database connection.

} catch (SQLException ex) {System.out.println ("SQL Exception.");}

catch (ClassNotFoundException e) {System.out.println ("Class Not Found.");}

} // main

} // InsertFruit

Delete

The delete command is used to delete a row in the database. A key field is used to determine the appropriate row. The query here is "Delete From fruit Where id = '" + keyId + "'". This deletes the row with the id provided by the user.

import java.util.Scanner;

import java.sql.*;

// DeleteFruit removes a row from the database table.
public class DeleteFruit

{

static Scanner keyboard = new Scanner (System.in);

public static void main (String [] args)

{

try

{

// Get a jdbc-odbc bridge and connect to grocery.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Get the id for the product to be deleted.

System.out.print ("ID of row to be removed: ");

String keyId = keyboard.nextLine ();

// Create a query and execute the update.

Statement stmt = con.createStatement ();

String query = "Delete From fruit Where id = '" + keyId + "'";

int success = stmt.executeUpdate (query);

stmt.close ();

// Indicate whether or not the deletion was successful.

if (success == 0) System.out.println ("ID not found");

else System.out.println ("Row deleted.");

con.close ();

} catch (ClassNotFoundException e) {System.out.println ("Class Not Found Exception.");}

catch (SQLException es) {System.out.println ("SQL Exception");}

} // main

} // DeleteFruit
Update

The update query is somewhat similar to the Insert query. Update is used to change an entry in the database, such as a price. The query must include a key to indicate which row is to be changed. For example, to change the price of a product in the row with a given id, we can use the following query:

"Update fruit Set price = " + newPrice + " Where id = '" + id + "'";
This query also uses the method, executeUpdate.

import java.util.Scanner;

import java.sql.*;

// ChangePrice reads in an id and a new price and changes the price in the table.
public class ChangePrice

{

static Scanner keyboard = new Scanner (System.in);

public static void main (String [] args)

{

try

{

// Get a jdbc-odbc bridge and connect to grocery.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Get the new data

System.out.print ("Enter the ID: ");

String id = keyboard.nextLine ();

System.out.print ("Enter the new price: ");

double newPrice = keyboard.nextDouble ();

// Create a query and execute the update.

Statement stmt = con.createStatement ();

String query = "Update fruit Set price = " + newPrice + " Where id = '" + id + "'";

int success = stmt.executeUpdate (query);

stmt.close ();

// Check whether or not the updated was carried out.

if (success != 0) System.out.println ("Price Changed.");

else System.out.println ("Error, price not changed.");

con.close ();

} catch (ClassNotFoundException e) {System.out.println ("Class Not Found Exception.");}

catch (SQLException es) {System.out.println ("SQL Exception");}

} // main

} // ChangePrice
It is possible to change several fields at the same time. The following query can be used to change both the quantity and the price.

"Update table Set quantity = 30, price = 1.50 Where id = 'P136'"
If the data are stored in the variables newQuantity and newPrice, it would be

"Update fruit Set quantity = " + newQuantity + ", price = " + newPrice + " Where id = '" + id + "'"

Prepared Statements

If an update is to be done a number of times, it may save time to read the data from a file and to prepare the statement before executing all the updates. This is done with the Java object, PreparedStatement. In a prepared statement, variables are replaced by question marks (‘?’).

An insert statement for the grocery database might look like:

String stmt = "Insert Into fruit Values (?, ?, ?, ?)";
This statement is then ‘prepared’ so that it can be used inside a loop.

PreparedStatement prepStmt = con.prepareStatement (stmt);
In the loop, the data has to be ‘set’ into the statement. Each question mark has a number, beginning with 1. To replace the first question mark with the value of the variable, id, use:

prepStmt.setString (1, id);
Similarly, the quantity would be inserted with

prepStmt.setInt (3, quantity);

The following program uses a Scanner to read from the file, data.txt. The data file consists of a number of lines, each similar to the following:

S543 Strawberries 30 3.25

B345 Blueberries 50 2.35
Each entry is separated by white space, i.e. a space, tab, or end of line character. (Other delimiters can be used as well.) The Scanner for this file is created by

Scanner scanner = new Scanner (new File ("data.txt"));
The data can be read inside a while loop that has scanner.hasNext () as its condition. Inside the loop, the data is read, set into the prepared statement, and the statement is executed. This is more efficient than creating a new Insert statement each time through the loop.

The entire program follows.

import java.util.Scanner;
import java.io.*;

import java.sql.*;

public class InsertFromFile

{

public static void main (String [] args)

{

try

{

// Get a jdbc-odbc bridge and connect to grocery.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Create a prepared statement for inserting the data.

String stmt = "Insert Into fruit Values (?, ?, ?, ?)";

PreparedStatement prepStmt = con.prepareStatement (stmt);

// Get a scanner for the data file and read the data.

Scanner scanner = new Scanner (new File ("data.txt"));

while (scanner.hasNext ())

{

// Set the values for the prepared statement.

prepStmt.setString (1, scanner.next ());
// Set the id.

prepStmt.setString (2, scanner.next ());
// Set the name.

prepStmt.setInt (3, scanner.nextInt ());
// Set the quantity.

prepStmt.setDouble (4, scanner.nextDouble ());
// Set the price.

// Execute update.

int success = prepStmt.executeUpdate ();

// Show whether or not the update was successful.

if (success == 0) System.out.println ("Insert error.");

else System.out.println ("Data inserted.");

}

con.close ();

} catch (SQLException ex) {System.out.println ("SQL Exception.");}

catch (ClassNotFoundException e) {System.out.println ("Class Not Found.");}

catch (FileNotFoundException e) {System.out.println ("No file.");}

} // main

} // InsertFromFile

References

1. Susan Anderson-Freed, Weaving a Website, Prentice Hall, 2002

2. Karl Moss, Java Servlets Developer’s Guide, McGraw-Hill/Osborne, 2002.

3. W3Schools Online Web Tutorials, http://www.w3schools.com.

�

PAGE
6

[image: image2.emf]

