Session Tracking Using HttpSession

HyperText Transfer Protocol (HTTP) was not designed to aid web sites in tracking users’ activities. When a user makes a request for a browser page, the server responds to the request and then disconnects. The server can store the IP (Internet Protocol) address, but it may not be unique. Often several computers share the same IP address.

Web sites need some way besides the IP address to keep track of their visitors. This is especially true of on-line stores. Users typically put something in their shopping cart and then continue shopping on the site. And stores want to encourage this behavior. They want customers to buy a number of products when they visit.

There are two ways for web sites to track user activity. One is by depositing a cookie on the user’s hard drive, and the other is URL rewriting. There are several kinds of cookies, but the one that we will look at just puts some text into temporary storage and deletes it when finished. URL rewriting involves adding an identification number to the URL string. This is actually less safe than storing a cookie, since the string is sent unencrypted, and use of the back button on the browser can destroy it.

HttpSession

Java supplies a session object
 that implements javax.servlet.http.HttpSession. It is created by the server when a browser connects to it. It is associated with HttpServletRequest and can be accessed by a servlet using

HttpSession session = request.getSession (true);

The boolean parameter, true, is used to tell the server to use the current session if there is one, or to create a new session if no current session exists. If the parameter is omitted, the default is true.

When a session is created, a cookie containing a session ID is stored on the user’s hard drive. The name of the ID is JSESSIONID. It is a long string made up of a random sequence of letters and digits. It is probably not sufficiently random for very large web stores,
 but for smaller ones it is unlikely that two sessions would receive the same ID. If the user’s browser does not accept cookies, the server can use

String url = request.getRequestURI ();

String codedUrl = reponse.encodeURL (url);

The string, codedUrl is then added to the IP address that is used to send a web page back to the browser. Since this is shown in the browser’s window, it is not very secure.

Sessions have a life-time. They begin when the user first contacts the web-site and end when the user closes the browser. The server can terminate sessions after a given number of minutes. This information can be included in web.xml with the lines

<session-config>

<session-timeout>30</session-timeout>

</session-config>

If the time given is negative, the session will not timeout.

Cookies

When the server gets a session object, a cookie is created and stored on the user’s computer.
 The server can also create cookies and deposit them on the user’s computer. A cookie is created by

Cookie cookie = new Cookie (name, value);

where name and value are both Strings made up of ascii alphanumeric values. The following code will add a cookie to the user’s computer:

Cookie cookie = new Cookie ("Your name", "Some value such as an ID");

response.addCookie (cookie);

Unless the server specifies otherwise, the cookie will be deleted when the browser is closed. That can be changed by setting the maximum age for the cookie. The code for this is

cookie.setMaxAge (time_in_seconds);
If you wish the cookie to be available for an hour, use

cookie.setMaxAge (3600);
You can also set a comment with cookie.setComment ("This is an example of a cookie."). However, comments are not returned to the browser. The following servlet illustrates this. When testing it, make sure that you add it to web.xml.

package http_session;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

//
MakeCookie creates a cookie, stores it, and then checks for cookies on the user’s computer.
public class MakeCookie extends HttpServlet

{

protected void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

// Create a new cookie with a name and value.

Cookie cookie = new Cookie ("Pace", "Computer Science");

cookie.setComment ("This is an example of a cookie.");

cookie.setMaxAge (3600); // Set the maximum age to be an hour.

response.addCookie (cookie);

// getCookies returns an array of cookies.

Cookie [] cookies = request.getCookies ();

// Output the cookies on the computer.

Page.createHeader (out, "Cookies");

if ((cookies == null) || (cookies.length == 0))

out.println ("<h3>No Cookies Found</h3>");

else

{

out.println ("<h3>Cookies Found</h3>");

for (int count = 0; count < cookies.length; count ++)

{

out.println ("
Name: " + cookies [count].getName ());

out.println ("
Value: " + cookies [count].getValue ());

out.println ("
Comment: " + cookies [count].getComment ());

out.println ("
MaxAge: " + cookies [count].getMaxAge ());

}

}

Page.createFooter (out);

} catch (IOException ex) {System.out.println ("<h3>IO Exception.</h3>");}

} // doGet
} // MakeCookie

Session Attributes

The session object is available to all servlets in the application. Using this, session data can be passed from one servlet to another while the session is active. Data is stored as a session attribute. Attributes are maintained in a hash table. This means that you need a key (String) for each attribute. These strings can be constants in your servlets.

Once the servlet has gotten a session, it can set an attribute, such as a customer’s ID.

HttpSession session = request.getSession (true);

session.setAttribute (CustomerKey, customerId);

where CustomerKey is a constant String used throughout the application to locate the customer’s data.

Attribute data is retrieved using getAttribute (key), as follows:

String customerId = (String) session.getAttribute (CustomerKey);
Note that this hash table stores objects, so when the ID is retrieved, it must be cast to a String.

A very simple servlet illustrates this.

package http_session;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

//
SessionAttribute stores a customer’s ID in a session attribute.
public class SessionAttribute extends HttpServlet

{

static final String CustomerKey = "SessionKey";

protected void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

HttpSession session = request.getSession (true);

String sessionId = session.getId ();

// In this example, the customer’s id is just the first 6 characters of the session id.

String customerId = sessionId.substring (0, 6);

session.setAttribute (CustomerKey, customerId);

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

Page.createHeader (out, "Session Attributes");

out.println

("<h3>Customer ID: " + (String) session.getAttribute (CustomerKey) + "<h3>");

Page.createFooter (out);

} catch (IOException ex) {System.out.println ("<h3>IO Exception.</h3>");}

}

} // SessionAttribute
Session attributes can be used to store any object including IDs, shopping carts, customer orders, etc. There is a limit on the number, but you are unlikely to exceed it.

Shopping Carts

On-line stores use shopping carts to store customer purchases before they decide to check out. There are many ways to implement these, but probably the simplest is as a vector of items. The Item object can store information about the item ordered, such as the product’s ID, name, quantity ordered, etc. The shopping cart then maintains a vector of items. It also keeps track of the ID for the order, the customer’s ID, and the running total cost of the order.

The cart can be created and saved as a session attribute either when the customer first visits the web site or when the customer first adds an item to the cart.

// Get the shopping cart from the session or create a new one if none exists.

cart = (ShoppingCart) session.getAttribute (CartId);

if (cart == null)
 // This is the first time an item is to be added.

{

String sessionId = session.getId ();

String orderId = sessionId.substring (0, 6);

String customerId = sessionId.substring (6, 12);

cart = new ShoppingCart (orderId, customerId);

session.setAttribute (CartId, cart);

}

// Before adding an item, check to see that there is enough in stock.

if (quantityInStock >= quantity)

{

enoughStock = true;

Item item = new Item (id, name, quantity, price);

cart.addItem (item);

}

else enoughStock = false;
// The quanity in stock was insufficient.

When the customer decides to add something to the cart, it can be retrieved from the session. Since the cart is an object all that is actually stored is a reference (pointer) to the cart, so adding an item changes the contents of the cart.

ShoppingCart cart = (ShoppingCart) session.getAttribute (CartId);

Item item = new Item (productId, name, quantityOrdered, price);

cart.addItem (item);
If the customer then decides to buy the items in the cart and check out, the cart can again be retrieved from the session and the order processed.

HttpSession session = request.getSession ();

ShoppingCart cart = (ShoppingCart) session.getAttribute (CartId);
The entire example is in Appendix B.
References

1. Susan Anderson-Freed, Weaving a Website, Prentice Hall, 2002.

2. H.M. Deitel, P.J. Deitel, and T.R. Nieto, Internet & World Wide Web, How to Program, 2nd Edition, Prentice Hall, 2002.

3. Marty Hall & Larry Brown, Core Servlets and Java Server Pages, First Edition, Sun Microsystems Press/Prentice-Hall PTR Book, 2003.

4. Elliotte Rusty Harold, Java Network Programming, O’Reilly & Associates, Inc., 2000.

5. Karl Moss, Java Servlets Developer’s Guide, McGraw-Hill/Osborne, 2002.

6. Dave Raggett , A History of HTML, Chapter 2, Addison Wesley Longman, 1998, http://www.w3.org/People/Raggett/book4/ch02.html.

7. W3Schools Online Web Tutorials, http://www.w3schools.com.

� Some web stores have decided not to deal with users that have set their browsers to refuse cookies.

� In Java server pages, session is predefined.

� Web sites with heavy traffic can use GUIDs. A GUID is a Global Unique IDentifier. Generally, a GUID consists of a random number created using the time on the computer in nanoseconds and some feature of the server. In the past this was the network card MAC (Media Access Control) address. But after the Melissa worm used this to infect computers world-wide, Microsoft changed the GUID algorithm. The string, 3F2504E0 4f89 11D3 9A 0C 03 05 E8 2C 33 01, is an example of a GUID. The numbers are in hexadecimal.

� Much of the material about sessions and cookies comes from Chapter 3 in the book, Java Servlets Developer’s Guide, by Karl Moss.

PAGE
1

