Connecting to a Database using Java
In an assignment, we created an Access database and sent queries to it. We can also use a programming language to make the queries. The main problem is connecting to the database in the first place. After that the queries just use SQL commands as before. The following example of a database table, called AddressTable, will be used to show how to make queries from a Java program. It is contained in an Access database called addresses.mdb.
[image: image2.emf]

To connect to a database using a Java program, you must first register the database with the operating system.
 The connection is done with a jdbc-odbc bridge. Jdbc stands for Java database connectivity API (application programming interface), while the ‘O’ in Odbc stands for Open. Odbc is a protocol from Microsoft that is based on the X/Open SQL specification.

In a Java program, we create a Connection object. The lines of code required are:

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

where addresses is the name used for the database in the registration information. Both the Connection and DriverManager objects are contained in the Java package, java.sql. This package is a standard part of JDK and so does not have to be downloaded separately. But it must be imported into any program that connects to a database. These lines should be copied as is into all your database programs. The only change required will be the registration name, here called addresses.
SQL – Select and Queries
SQL stands for Structured Query Language
 and is usually pronounced sequel. SQL is the standard way to interact with relational databases and is not part of Java. SQL is not case sensitive, so you can mix upper and lower cases, but commands traditionally use upper case. In these examples, all commands begin with an upper case letter. Some examples of commands are Select, Insert, Delete, and Update. You can also modify commands by using connectors such as Where or Set.

Select is used to obtain information from the database. For example, "Select * From AddressTable" will get all (*) the data from the table, AddressTable. If you do not want all the data, you can add a clause that will further define the rows needed. This is done with the modifier, Where. For example, if you just want the names that begin with the letter A, you can use the query

"Select * From AddressTable Where Name Like 'A%'"

The 'A%' combination is used to indicate a pattern that begins with the letter A. Note the single quotes.

When sending a query to a database from a program, you first create a Statement object for the query, and then you execute it. If the database is able to execute the query, it returns a ResultSet with the data. A query that returns all the data in the AddressTable uses the following code:

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable";

ResultSet rs = stmt.executeQuery (query);

The result set consists of a sequence of rows. It has a cursor that is initially set to zero, not a valid row in a table. The method, rs.next (), is used to move the cursor to the next row in the set. In addition as a side effect it returns a boolean value. If the result set is empty, this value will be false, otherwise it returns true. Because it returns a boolean, it can be used as the condition for a while or an if statement.
The particular fields in the row can be obtained using get methods. Since all the items in this database are strings, the get method used here is getString. Other data types can be stored in a database too, so there are getXXX () statements for them as well. For example, if the data in the column are integers, a getInt() method is used.

Java programs are designed in such a way that they don’t crash when something goes wrong. Instead they throw an exception. If everything works as desired, the exception is never reached. But if something goes wrong, the program can have special lines of code to handle the problem. The classic example is dividing by zero. If the denominator is not zero, the division takes place as usual. However, if by some accident, the denominator is zero, the division will not occur and something else can be done. Often this just amounts to printing an error message.
When connecting to a database, there are several possible problems that can happen. The first is caused by a problem connecting to the database. This throws a ClassNotFoundException. The second happens when there is something wrong with the SQL query. This throws a SQLException. A simple example follows.
//
This is a Java application that gets data from a database and displays it on the screen.
import java.sql.*;

public class Addresses

{

public static void main (String [] args)

{

try

{

// Get a connection to the database.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

// Create a statement and a query.

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable";

// Execute the query and retrieve a ResultSet.

ResultSet rs = stmt.executeQuery (query);

System.out.println ("Address Table Results");

// Display the data in the ResultSet.

while (rs.next ())

{

System.out.println ();

System.out.println ("Name: " + rs.getString ("Name"));

System.out.println ("Email: " + rs.getString ("Email"));

System.out.println ("Telephone: " + rs.getString ("Telephone"));

}

con.close (); // Close the connection to the database.

} catch (SQLException e) {System.out.println ("SQL Exception");}

 catch (ClassNotFoundException e) {System.out.println ("Driver not found");}

} // main
} // Addresses
Finding a name in a database
The Where modifier can be used to find an email address given a name in a database table. If the name occurs only once in the table, the result set will contain just that row. However, if there are several rows with the same name, the result set will include all of them.
If the name is stored in a variable in the program, it must be surrounded by quotation marks in the query string. The entire string must also be contained in quotation marks. The easiest way to indicate the quotes surrounding the variable is to use single quotes inside of the double quotes. Since these are difficult to see in the document, boldface has been used for them. The resulting query string is

"Select * From AddressTable Where Name = '" + name + "'"
Note the extra single quote at the end.
import java.io.*;

import java.sql.*;
/*
FindEmail is used to find an email address for a person in a database. It finds the name and then displays the person's email address. */

public class FindEmail

{

public static void main (String [] args)

{

try

{

BufferedReader stdin = new BufferedReader (new InputStreamReader (System.in));

System.out.print ("Whose email address do you want to find? ");

String name = stdin.readLine ();

// Get a jdbc-odbc bridge and connect to addresses.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

// Create a statement and execute the query.

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable Where Name = '" + name + "'";

ResultSet rs = stmt.executeQuery (query);

// If the query returns a result, the ResultSet will be non-void.

if (rs.next ())

{

String email = rs.getString ("Email");

System.out.println ("The email address for " + name + " is " + email);

}

else System.out.println ("The name was not found in the database.");

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

 catch (IOException e) {System.out.println ("IO Exception");}

} // main

} // FindEmail
An Example with Integer and Double Datatypes
A database that stores information about products in a grocery store might have a table called fruit. An example is shown below.

[image: image1]
The data in the quantity and price fields are respectively Number and Currency. The Access default for Number is Long Integer. This is interpreted as int by Java. Since Java does not have a currency datatype, price data will be interpreted as doubles. So to retrieve the quantity, use rs.getInt ("quantity") and for price use rs.getDouble ("price")
//
FindFruit is used to find the quantity and price of fruit in the table, fruit.
import java.io.*;

import java.sql.*;

public class FindFruit

{

public static void main (String [] args)

{

try

{

BufferedReader stdin = new BufferedReader (new InputStreamReader (System.in));

System.out.print ("What fruit do you want to find? ");

String name = stdin.readLine ();

// Get a jdbc-odbc bridge and connect to grocery.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Create a statement and execute the query.

Statement stmt = con.createStatement ();

String query = "Select * From fruit Where Name = '" + name + "'";

// If the query returns a result, the ResultSet will be non-void.

ResultSet rs = stmt.executeQuery (query);

if (rs.next ())

{

System.out.println ("ID: " + rs.getString ("id"));

System.out.println ("Name: " + name);

System.out.println ("Quantity: " + rs.getInt ("quantity"));

System.out.println ("Price: $" + rs.getDouble ("price"));

}

else System.out.println ("The name was not found in the table.");

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

 catch (IOException e) {System.out.println ("IO Exception");}

} // main

} // FindFruit
Queries with Non-string Keys
If we want to find all the fruit that have a quantity greater than some amount, the query will be somewhat different. When the parameter for a ‘Where’ clause is not a string, the extra quotes are not used.

"Select * From fruit Where Quantity >= " + amount
This query returns the data for Apples and Bananas when the amount entered is 20. It also uses a greater than or equal sign. SQL queries can use =, <>, >, <, >=, <=, or Between.
 For Between you must specify an inclusive range.

//
FindQuantity is used to find all entries with a quantity larger than some given quantity.

import java.io.*;

import java.sql.*;

public class FindQuantity

{

public static void main (String [] args)

{

try

{

BufferedReader stdin = new BufferedReader (new InputStreamReader (System.in));

System.out.print ("Enter the amount for the lower limit: ");

int amount = Integer.parseInt (stdin.readLine ());

// Get a jdbc-odbc bridge and connect to grocery.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Create a statement and execute the query.

Statement stmt = con.createStatement ();

String query = "Select * From fruit Where Quantity >= " + amount;

// If the query returns a result, the ResultSet will be non-void.

ResultSet rs = stmt.executeQuery (query);

while (rs.next ())

{

System.out.println ("ID: " + rs.getString ("id"));

System.out.println ("Name: " + rs.getString ("name"));

System.out.println ("Quantity: " + rs.getInt ("quantity"));

System.out.println ("Price: $" + rs.getDouble ("price"));

}

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

 catch (IOException e) {System.out.println ("IO Exception");}

} // main

} // FindQuantity
References
1. Karl Moss, Java Servlets Developer’s Guide, McGraw-Hill/Osborne, 2002.

2. W3Schools Online Web Tutorials, http://www.w3schools.com.
�

�

� To connect to the database using a Java program, you must first register the database with the operating system. In Windows 98 this is done by clicking on Settings/Control Panel/Data Sources (ODBC). In Windows 2000 or XP, you will find this same file in Settings/Control Panel/Administrative Tools. Select Add/Microsoft Access Driver (*.mdb), and from there Browse to find the location of your database.

� For more information about SQL see the W3Schools web site, � HYPERLINK "http://w3schools.com" ��http://w3schools.com�.

� See � HYPERLINK "http://www.w3schools.com" ��http://www.w3schools.com� for more details.

PAGE
1

[image: image3.emf]

