Internet Programming I
Assignment 3
Due: October 3, 2006
Modify the program used for assignment 2 so that it uses the WebServer to either list the entire contents of the database or find a specific field. The html page will have two forms, one for each choice. The forms will have different action attributes that refer to two separate programs.
The SQL statement that gets all the data from the database is "Select * From AddressTable". The SQL statement for finding a specific name is "Select * From AddressTable Where Name = '" + name + "'". The ResultSet will contain all the fields (columns) in the database. If the data stored are strings, use rs.getString (column_name) to get the data in the fields. However, if the data are of some other type, use the appropriate getXXX (…) method. Some of these are getDate (…), getDouble (…), getInt (…), and getTime (…).

The following html page contains two forms, one for displaying the entire database and the second for finding a specific name in the database.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>Address List Form</title></head>

<body>

<h3>To see all the Addresses in the list, click the Display Button.</h3>

<form name = "display" method = "get" action="http://localhost:8080/client_server.DisplayAddresses">

<input type = "submit" value = "Display Addresses" />

</form>

<h3>To find a specific Address, enter the name.</h3>

<form name = "find" method = "get" action = "http://localhost:8080/client_server.FindAddress">

<p><input type = "text" name = "name" value = "" size = 30> Name </p>

<p><input type="submit" value="Find Address"></p>

</form>

</body>

</html>
The programs, DisplayAddresses and FindAddress, should be in the same folder as the WebServer program. Sample code for the FindAddress program follows. This program sends the data back to the client in an Html table.
Html tables consist of rows and columns; the tags for the rows are <tr> … </tr> and for the columns within the rows <td> … </td>. Tables begin with the tag <table> and end with </table>. The opening tag may also contain attributes such as border, cellspacing, and font color.

In addition to the main tags, a table can have a caption that is put between the tags <caption> and </caption>. It also can have a heading row. This is given with the tags <thead> … </thead>. Between these, put <th><td>…</td><td> … </td><td> … </td></th>.

So the html for a complete table might look like:

<table border = "1" bordercolor = "#000000" cellspacing = "5">

<caption> … </caption>

<thead> <th><td>…</td><td> … </td><td> … </td></th> </thead>

<tr> <td>…</td><td> … </td><td> … </td> </tr>

…

<tr> <td>…</td><td> … </td><td> … </td> </tr>

</table>

Tables are widely used in html in order to display data in even rows and columns, not just for displaying data from a database.

package client_server;

/* FindAddress locates a specific address in the database. */

import java.sql.*;

import java.io.*;

public class FindAddress extends WebRequestProcessor

{

public void process (Request request, Response response)

{

try

{

// Get the requested name and the output writer.

PrintWriter out = response.getWriter ();

String name = request.getParameter ("name");

// Get a driver and connect to the addresses database.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

// Create a statement and a query and get the ResultSet.

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable Where Name = '" + name + "'";

ResultSet rs = stmt.executeQuery (query);

// Prepare the page with all the data in the form of an html table.

Page.createHeader (out, "Address List");

// If the ResultSet is not empty, display a table with the data.

if (rs.next ())

{

// Set up the heading for the table.

out.println ("<table border='1' bordercolor='#000000' cellspacing='5'>");

out.println ("<caption>Addresses</caption>");

out.print ("<thead><tr>");

out.print ("<th>Name</th><th>Email</th><th>Telephone</th>");

out.println ("</tr></thead>");

// Display the row of the database.

out.print ("<tr>");

out.print ("<td>" + rs.getString ("Name") + "</td>");

out.print ("<td>" + rs.getString ("Email") + "</td>");

out.print ("<td>" + rs.getString ("Telephone") + "</td>");

out.println ("</tr>");

out.println ("</table");

}

else out.println ("<h3>The name " + name + " was not in the database</h3>");

con.close ();

Page.createFooter (out);

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

catch (SQLException e){System.out.println ("SQL Exception\n");}

} // process
} // FindAddress
// Class with static methods that add standard lines to the html output page.

class Page

{

public static void createHeader (PrintWriter out, String title)

{

out.println ("<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'>");

out.println ("<html>");

out.println ("<head>");

out.println ("<title>" + title + "</title>");

out.println ("</head>");

out.println ("<body>");

} // createHeader

public static void createFooter (PrintWriter out){out.println ("</body></html>");}

} // class Page
The most common error when creating these files is to use a different case in the Html form for a name than in the Java program. In the example Html file, the name is listed in lower case.

<p><input type = "text" name = "name" value = "" size = 30> Name </p>
While in the database, it is in upper case.

"Select * From AddressTable Where Name = '" + name + "'"
If either case is wrong, the program will not work. Also in the SQL statement, string values must be in quotation marks, '" + name + "'". This requires a single quote inside of or next to a double quote. Numeric values do not require quotes.
