Internet Programming I
Assignment 8

Html forms and Java programs

Due: November 7, 2006

One of the principle uses of programming on a web page is to collect data from an Html form and send it to the server. Once the data is there, it can be used in several ways. The server can compute something and send the result back to the user, or it can use the data to query a database. We will see examples of computations first. The ninth assignment will be used to query a database.
1. To get an idea how this works, we will need a server. There are a number of commercial servers including ones available from Microsoft. There is also an open source server, Apache Tomcat, from the Apache open source project. It is widely used, including on the Seidenberg School web site. Since these servers are fairly complicated, we will use a simple stripped down version that I wrote several years ago. It is called WebServer and can be found in the documents file on my website.

2. In the folder called IT 200, click on Course Documents. One of the files listed there is Webserver.zip. Unzip it into a folder on your computer or USB drive. You will find a number of files, including WebServer.java. There should also be a subfolder called client_server. This contains the .class files. These are the ones that contain the bytecode that can be interpreted and run by your computer.
3. Open JCreator and load the file, WebServer.java. It is all compiled and ready to run. So just click on the two blue dots that run the file. This will open a black console screen with nothing on it except Port: You can either type in a number for the port or press the Enter key. Doing the latter will select the default port, which is 8080. (The standard Internet port is 80. We will avoid using it, since we don’t want to interfere with usual Internet traffic.)

4. To see how the server works, open Internet Explorer and browse to the folder containing the Webserver. Next open the file called EmailForm.html. You should see the following screen.

[image: image1.emf]

5. Fill in your name and email address and click on the Send button. You should see something like the following, where the name entered was Alice Lee and the email address was alee@aol.com.
[image: image2.emf]

6. Next go to View/Source on the Internet Explorer menu. There you will find the Html source for the page. It should look like the following. This is a standard Html page with the data included.
<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'>

<html>

<head>

<title>Test Data</title>

</head>

<body>

<h3>Hello.</h3>

<h3>Your name is Alice Lee</h3>

<h3>Your email address is alee@aol.com</h3>

</body></html>
7. Now return to JCreator and look at the black console screen. It will now contain information about the process that you just ran. This information was written on the screen by the server when the Html form was processed. It shows that the server received the data, which is shown after the question mark (?). In this string, spaces are replaced by plus signs (+) and data items are separated by ampersands (&). This string was generated by Internet Explorer, and not by the WebServer program. The WebServer program only echoes it. The rest of the data on the screen comes from the WebServer program itself.
[image: image3.png][Processing: client_server.EnailProcessor
[Client at /127.0.071 disconnected

8. Now open the program EmailProcessor.java in JCreator. The program is shown below.
package client_server;

/**

 * EmailProcessor processes a request from a web page. It responds to the

 * request by sending back a web page listing the name and email address.

**/

import java.io.*;

import java.util.*;

public class EmailProcessor extends WebRequestProcessor

{

public void process (Request request, Response response)

{

// Get the request parameters with types name and email.

String name = request.getParameter ("name");

String email = request.getParameter ("email");

// Get a PrintWriter object and respond to the request.

PrintWriter out = response.getWriter ();

Page.createHeader (out, "Test Data");

out.println ("<h3>Hello.</h3>");

out.println ("<h3>Your name is " + name + "</h3>");

out.println ("<h3>Your email address is " + email + "</h3>");

Page.createFooter (out);

}

}

// Class with static method that add standard lines to the html output page.

class Page

{

public static void createHeader (PrintWriter out, String title)

{

out.println ("<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'>");

out.println ("<html>");

out.println ("<head>");

out.println ("<title>" + title + "</title>");

out.println ("</head>");

out.println ("<body>");

} // createHeader

public static void createFooter (PrintWriter out){out.println ("</body></html>");}
} // class Page

9. The Page class is used to incorporate standard Html lines into the output page. You will want to include it in all of your programs. You can copy it without change from one to the next. The out.println statements write the material between the quotation marks to the output page. This is the Html page that is returned to the user (client).
The rest of the output page is created from the following lines in the main class:

out.println ("<h3>Hello.</h3>");

out.println ("<h3>Your name is " + name + "</h3>");

out.println ("<h3>Your email address is " + email + "</h3>");
The first line just writes the word, Hello. But the second and third lines write some information along with the data entered on the form.
The lines

String name = request.getParameter ("name");

String email = request.getParameter ("email");

are used to bring this information into the program.

10. Next open the Html form page in JCreator. When you click on the open file icon, you will only see Java files. Click on the Files of type: down arrow and select Html Files. You will then see the file, EmailForm.html. It should look like the file below.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html><head><title>E-Mail Form</title></head>

<body>

<h3>Enter your name and e-mail address.

Then click the Send button to send the data to the server.

See the results.</h3>

<form method="get" action="http://localhost:8080/client_server.EmailProcessor">

<p><input name="name" value="" size="30" type="text"> Name </p>

<p><input name="email" value="" size="30" type="text"> E-Mail Address </p>

<p><input value="Send" type="submit"></p>

</form>

</body></html>

11. The Java program uses a request to get the data from the form. The line,

String name = request.getParameter ("email ");
receives the data entered into the box called email in the form. It comes from the line

<p><input name="email" value="" size="30" type="text"> E-Mail Address </p>

It is very important that the parameter in name="email" be exactly the same as that in

request.getParameter ("email ");

Since Java is case sensitive, a serious error is to use different cases in the two places.

12. Now change both the program and the form to add a box for a telephone number. Insert another input statement into the form to produce the third box.

<p><input name="phone" value="" size="30" type="text"> Telephone </p>

Then save the changed file.

13. Next insert two new lines into the program, one to get the new data item and the other to display it. The line that gets the data will read

String phone = request.getParameter ("phone");

The line that displays it will be something like

out.println ("<h3>Your telephone number is " + phone + "</h3>");
Note that all three places use the word, phone, and not some modification of it. You should be able to tell where these lines go in the program by looking at the other lines there.

14. Now start over with a new form and a new program. This time the form should have boxes for the width and height of a rectangle. You can copy the EmailForm into the new Html file and change several lines. The first line to change is the one with the form tag. It must have the name of the Java program that will process this request. If you call that program AreaProcessor, the form tag becomes

<form method="get" action="http://localhost:8080/client_server.AreaProcessor">
You should also change the lines that tell the user what to do.

<h3>Enter your width and height of a rectangle.
Also both input lines that define the boxes have to be changed. They become

<p><input name="width" value="" size="30" type="text"> Width </p>

<p><input name="height" value="" size="30" type="text"> Height </p>

Save this form with a name such as AreaForm.html.
15. Next create the Java file called AreaProcessor. Again copy the code from EmailProcessor and change some of the lines. First change the name of the program to AreaProcessor. The file name and the program name must be the same. You should also change the information in the comment.

Now change the request lines to

int width = Integer.parseInt (request.getParameter ("width"));

int height = Integer.parseInt (request.getParameter ("height"));
Just as in JavaScript, the strings must be changed to numbers. In Java this is done with Integer.parseInt. This is awkward, but it works. (To change a string into a double, use Double.parseDouble.)
The computation part is easy. We need a variable called area that will multiply the width and the height. The line needed is

int area = width * height;
Last we change the output lines. They now become

out.println ("<h3>Area of Rectangle.</h3>");

out.println ("<h3>The area of the rectangle is " + area + "</h3>");
Save and compile the program. Test it out by running it with the WebServer program.
16. Now do some other computation. Create a new Html form and Java program. Be very careful that the parameters are the same case in both. It is easiest just to keep the names simple and use all lower case. Again you only have to change a few lines in the files. When done, test the program to make sure it works, zip up the folder and send it to me.
