Sending Email
1. Open your pizzeria application and type rails generate mailer CustomerMailer. This command will create a mailers folder containing customer_mailer.rb, and an empty views/customer_mailer folder. The message to be sent will be stored in the latter.
2. In pizza_controller.rb, create a global variable called @@order_number. Put it at the beginning of the class and initialize it to 0. It will keep track of the number of orders for the day. Near the end of the order method, increase it by one. Add a line to the ‘respond_to’ section that will deliver the mail.
class PizzaController < ApplicationController

@@order_number = 0

…

def order

…
@customer_email = @params[:email]

@customer_name = @params[:name]

@@order_number = @@order_number + 1

respond_to do |format|

CustomerMailer.thankyou_email(@customer_email, @customer_name,

@@order_number).deliver

format.html

end

end

end

The thank you email is the message that will be delivered. It takes the customer’s email, name and order number as parameters. The email address will be used to send the message, the name will be part of the salutation and the order number will give the customer something to refer to if there are any problems with the order.
3. The following code goes into app/mailers/ customer_mailer.rb:

class CustomerMailer < ActionMailer::Base

default from: "your_email_address"

def thankyou_email(email, name, number)

@customer_email = email

@order_number = number

@customer_name = name

mail(:to => @customer_email, :subject => "Order Received")

end

end

This provides the reply to, send to and subject for your email.

4. Add text fields for the customer’s name and email address to app/views/pizza/index.html.erb so that you will have the email address for sending the message and the name of the receiver.
 <p>

<%= form.label :email %>

<%= form.text_field :email %>

</p>

<p>

<%= form.label :name %>

<%= form.text_field :name %>

</p>

5. The folder views/customer_mailer is empty. Create a new view for it. One way to do this is to copy another file into the folder, rename it thankyou_email.html.erb and then replace its contents. The following is a sample email message.
<!DOCTYPE html>

<html>

<head>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />

</head>

<body>

<h4>Dear <%= @customer_name %>,</h4>

<p>

Your order has been received. Thank you.

Your order number is: <%= @order_number %>.

</p>

</body>

</html>

6. Next open config/environments/development.rb. Change the line relating to delivery errors from false to true:

config.action_mailer.raise_delivery_errors = true
This will make the mailer errors visible to you while creating your application.
7. Then at the bottom of the class (before the end) add the configuration for your email. This one is set up for gmail. (You must have a real gmail account to do this.)
config.action_mailer.delivery_method = :smtp

config.action_mailer.smtp_settings =
{

:address

=> "smtp.gmail.com",

:port

=> 587,

:domain

 => 'localhost',

:user_name

=> ‘your_gmail_name',

:password

 => 'your_gmail_password ’,

:authentication

=> 'plain',

:enable_starttls_auto
=> true
}
8. Set it up first to have the email sent to yourself. Then use the email of someone else in the class and check that it was sent.
9. You can also modify this example to send email messages from your own applications.

[image: image1.png]& Order Received - Thankyou. - Mol .. = |
File Edit View Go Message Iools Help
& GetMail v #Wite WChat & Address Book |

& Reply|| = Forward | {5 Archive | @ Junk|| @ Delete
From Meit

Subject Order Received - Thank you. 4350
To Meit Other Actions ~
Dear Alice Lee,

Your order has been received.
Your order number is: 2.

Ajax

1. We can also add Ajax (Asynchronous JavaScript and XML) to our application. First add the time to the index controller.

def index

@time = Time.now.to_s

end
2. Next add <h3>The time is now <%= @time %></h3> to the top of the index page (views/index.html.erb). When you run the application and click on this, it will display the time stored in your computer. It will not change until you reload the page.

3. Ajax is used to reload only a portion of the page. Add the following to your index page:

<div id="time_div">

<%= link_to "Click here ",

:url =>{ :action => :update_time },

:remote => true
 %>

to update the time.

 </div>
4. Then add a new method to the controller:

def update_time

render(:update) do |page|

page[time_div].replace_html @time

end

end

5. Now when you click on the update link, it will update the time without changing the rest of the page.
