The Manager’s Page
1. Next we will make a new page for the manager of the store. In c:/sites/store, type
rails generate controller manager index show find. This page will be accessed using the login that we will create in the next.
2. In config/routes.rb, change the ‘gets’ to ‘posts’ in the new routes for show and find.
3. To show a product, the manager will type in the name. Then the display will include the id, so that from there on, the product may be accessed using it.

4. First enter the code used to find and show a product. The following goes into app/views/manager/index.html.erb.
<h1>Manager’s Page</h1>
<h2>Show</h2>

<h3><%= form_for :product, :url => {:action => :show} do |form| %>

<p><label for="title">Name:</label>

<%= form.text_field :name, :size => 20 %></p>

<p><%= submit_tag "Show" %></p></h3>

<% end %>
5. The show method in the controller is as follows.
def show
@params = params[:product]

@product = Product.find_by_name (@params[:name])

respond_to do |format|

if @product != nil

format.html

else

format.html { render :action => "not_found" }

end

end

end
6. The file show.html.erb is the same as that in views/products with the id added. Just copy it from the products page and add the following after the image tag.
<p>

ID:

<%= @product.id %>

</p>
Also change the link at the bottom to <%= link_to 'Back', manager_index_path %>.
7. We also need a file called not_found.html.erb. You can copy the one from views/home page into views/manager. Change the back link to <%= link_to 'Back', manager_index_path %>.
8. Using the show command, the manager can find the product’s id. So the find method will use it. The following code goes onto the index page. This time the id is sent rather than the name.

<h2>Find</h2>

<h3><%= form_for :product, :url => {:action => :find} do |form| %>

<p><label_for="id">ID:</label>

<%= form.text_field :id, :size => 20 %></p>

<p><%= submit_tag "Find" %></p></h3>

<% end %>
9. Finding the product with the id is done with another method.

def find

@params = params[:product]

@product = Product.find_by_id(@params[:id])

respond_to do |format|

if @product != nil

format.html

else

format.html{ render :action => "not_found" }

end

end

end

10. If the product is found, find.html.erb will be sent back to the manager. This will return a single line from the table found on the product’s index page. Because it no longer contains the line

<% @products.each do |product| %>

each of the ‘product’ names must be preceded by the @ sign.
<table class="center">

<tr>

<th>ID</th>

<th>Image</th>

<th>Name</th>

<th>Quantity</th>

<th>Price</th>

<th></th>

<th></th>

<th></th>

</tr>

<tr>

<td><%= @product.id %></td>

<td><%= @product.image %></td>

<td><%= @product.name %></td>

<td><%= @product.quantity %></td>
<td><%= @product.price %></td>

<td><%= link_to 'Show', @product %></td>

<td><%= link_to 'Edit', edit_product_path(@product) %></td>

<td><%= link_to 'Destroy', @product, :confirm => 'Are you sure?', :method => :delete %></td>

</tr>

</table>

<%= link_to 'Back', manager_index_path %>

[image: image1.png]€« localhost 2000/manzger/find 2l &
Most Visited @ Getting Started

™ Image Name Quantity Price

[t lapples-1.jpg |[apples 50 2.25 |lshow [[Edit ([Destroy

Back

11. This can now be used to show, edit and destroy the product. But all the returns will have to be changed to the manager’s page. This requires changes to the associated files in views/products. The link_to statements must now be <%= link_to 'Back', manager_index_path %>. And in the products controller, the destroy method requires a one line change.

def destroy

@product = Product.find(params[:id])

@product.destroy

respond_to do |format|

format.html { redirect_to(manager_index_url) }

format.xml { head :ok }

end

end
12. You may also add a link on the index page to create a new product. This way the manager can add a product to the database from the index page. Also a link to the home page may be helpful.
<h2>New</h2>

<%= link_to 'New Product', new_product_path %>

<h2>Home Page</h2>
<%=link_to 'Home Page', home_page_index_path%>
13. View this page using localhost:3000/manager/index.
[image: image2.png]Manager's Page
Show
Name:
[(show]
Find

D:

New

New Product

Home Page

Home Page

14. If you now close the server and type rake test:functionals, you will get errors similar to the ones you saw in lab 7. You will need to make changes to both manager_controller_test.rb and products_controller_test.rb.

Two methods in the manager page send parameters. These are show and find. So in the manager_controller_test, you need to send parameters for “should get show” and “should get find”.

test "should get show" do

get :show, :product => {:name => "Peaches"}

assert_response :success

end

test "should get find" do

get :find, :product => {:name => "Berries"}

assert_response :success

end

The other change required is to products_ controller_test.rb. Since we changed the redirect in the destroy method of the products controller, we also have to change that in the products test .

test "should destroy product" do

assert_difference('Product.count', -1) do

delete :destroy, id: @product

end

assert_redirected_to manager_index_path

end
Run the test again after making the changes. There should be no errors or failures now.
15. Next make a login for the manager on the home page. First get a table for passwords:

rails generate scaffold user username:string password:string
16. Then type rake db:migrate to create the users table.

17. Open the server and go to localhost:3000/users. Then add some data to the users table.

18. Next close the server and add methods to the home_page controller:

rails generate controller home_page login verify -s
The –s stands for skip. This won’t change anything currently in the controller.

19. As usual in routes.rb, change the second ‘get’ to a ‘post’: post "home_page/verify".
20. Add the following code to login.html.erb:

<h2>Login</h2>

<h3><%= form_for :user, :url => {:action => :verify} do |form| %>

<p><label_for="username">UserName:</label>

<%= form.text_field :username, :size => 20 %></p>

<p><label_for = "password">Password:</label>

<%= form.password_field :password, :size => 20 %></p

<p><%= submit_tag "Login" %></p></h3>

<% end %>
This will send the username and password to the verify method in the home_page controller.

21. The code for the verify method in the home_page controller follows. A correct login will take the user to the manager’s page created in the previous lab.

def verify

@params = params[:user]

@user = User.find_by_username(@params[:username])

@password = @params[:password]

respond_to do |format|

if @user != nil

if @password == @user.password # Check if password is correct.
format.html { redirect_to(manager_index_url, :notice => 'Authorized') }

else

format.html { render :action => "login_error"}

end

else

format.html { render :action => "login_error"}

end

end

end

22. Create a file called login_error.html.erb. You can rename verify.html.erb and copy in the code below. The verify view isn’t needed, since a successful login redirects the manager to the products page. And an unsuccessful one will send the user back to the home page.

<h3>Login Error.</h3>

<%= link_to 'Back', home_page_index_path %>
23. Last, on the home page index page (home_page/index.html.erb) add a button to the login page.

<%= button_to 'Login', home_page_login_path, :method => "get" %>

[image: image3.png]) Store - Mozilla Firefox
Fle Edt Vew Hitory Bookmarks

store

€3 e

Login
UserName: |alee@aol.com

Password

