A Shopping Cart for the Store
1. Create the customer’s cart: rails generate scaffold customers_cart name:string email:string.
We won’t use the name and email in this lab, but this makes it available for subsequent work, should we want it.
2. Create the cart items table:
rails generate scaffold cart_item customers_cart_id:integer product_id:integer
 quantity_ordered:integer
3. As usual after generating models, we must run rake db:migrate.
4. The customer’s cart is stored in the application controller (application_controller.rb) in order to be available to the entire application. It is used to identify this particular customer for all of his/her transactions. The code follows:

class ApplicationController < ActionController::Base
protect_from_forgery
private

def current_cart

CustomersCart.find(session[:customers_cart_id])

 rescue ActiveRecord::RecordNotFound

Used if this is the first item added to the cart.

customers_cart = CustomersCart.create

 session[:customers_cart_id] = customers_cart.id

customers_cart

 end
end
5. The cart items table holds the id’s of both the customer’s cart and the product ordered. In addition it stores the quantity ordered. So the cart_items table has both products and customer’s carts (id’s). Any product is likely to appear many times in the table with different customers. And each customer’s cart may have many items. The second clause makes sure that once the cart is destroyed, all items for that customer will also be removed. The code follows:
In models/customers_cart.rb

has_many :cart_items, :dependent=> :destroy

In models/product.rb

default_scope :order => 'name'

has_many :cart_items

In models/cart_item.rb

belongs_to :product

belongs_to :customers_cart

6. In the destroy method of the customers_carts controller change the redirect to
format.html { redirect_to(home_page_index_url, :notice => 'Your cart is currently empty') }

7. In models/customers_cart.rb, add the following code that will be used to add a product to the shopping cart. The second method will be used to add up all the items in the cart.
class CustomersCart < ActiveRecord::Base

has_many :cart_items, :dependent=> :destroy

def add_product(product_id, quantity)

current_item =CartItem.new(:product_id => product_id, :quantity_ordered => quantity)
cart_items << current_item
#appends a value

current_item

#returns a value

 end

def total_price

cart_items.to_a.sum { |item| item.sub_total }

end

end

8. The following code goes in models/cart_item.rb. It is used to find the cost for a single transaction.
def sub_total
product.price * quantity_ordered
end
9. We can also add validations to the cart_items table:

validates :quantity_ordered, :presence => true

validates :quantity_ordered, :numericality => {:greater_than_or_equal_to => 1}
10. Add the following to views/home_page/find.html.erb. The id is of no use to customers, so it is sent in a hidden field. However it is needed in order to identify the specific product to be added to the cart.
 <h2>Add to Cart</h2>

 <h3><%= form_for :product, :url => {:action => :add_to_cart} do |form| %>

<p><label_for="quantity">Quantity:</label>

<%= form.text_field :quantity, :size => 10, :value => ‘ ‘ %></p>

<%= form.hidden_field :id %>

<p><%= submit_tag "Add to Cart" %></p></h3>

 <% end %>

 <p><%= link_to 'Back', home_page_index_path %></p>

11. To see the shopping cart, add the following code to views/customers_carts/show.html.erb. The for loop lists all the items so far added to the cart. The following part shows the current total cost. The link to delete the cart uses the destroy method in the customers_carts controller.
<h3>Shopping Cart</h3>

<p id="notice"><%= notice %></p>

<table align="center">

<% for item in @customers_cart.cart_items %>

<tr>

<td><%= item.product.name %></td>

<td><%= item.quantity_ordered %> ×</td>

<td><%= number_to_currency(item.product.price) %></td>

<td ><%= number_to_currency(item.sub_total) %></td>

</tr>

<% end %>

<tr class="total_line">

<td colspan="3">Total</td>

<td class-"total cell"><%= number_to_currency(@customers_cart.total_price) %></td>

</tr>

</table>

<p>

<%= button_to "Empty Cart", @customers_cart, :method => :delete, :confirm => 'Are you sure?' %>

</p>

<p>

<%= link_to 'Back', home_page_index_path %>

</p>
12. In the customers_carts_controller, change the redirect in the destroy method to

format.html { redirect_to home_page_index_url }
13. We can also put a button on the home page (views/home_page/index.html.erb) allowing customers to view their shopping carts from there.
 <h2>Show Shopping Cart</h2>

 <h3><%= form_for :customers_cart, :url => {:action => :show_cart} do |form| %>

 <%= form.hidden_field :id %>

 <p><%= submit_tag "Show Shopping Cart" %></p></h3>

 <% end %>

14. We now need methods in the home page controller called add_to_cart and show_cart and also a view, show_cart. We can get this by typing
rails generate controller home_page add_to_cart show_cart -s.
This will generate two views: add_to_cart and show_cart and two new routes, but no methods. Change the new routes in config/route.rb to ‘posts’.

15. Next copy the code in views/customers_carts/show.html.erb into the new view in views/home_page/show_cart.html.erb.
16. On the home_page index page we will need a button to show the cart.

<h2>Show Shopping Cart</h2>
<h3><%= form_for :customers_cart, :url => {:action => :show_cart} do |form| %>

 <%= form.hidden_field :id %>

 <p><%= submit_tag "Show Shopping Cart" %></p></h3>

<% end %>
17. Finally add methods to the home_page controller called add_to_cart and show_cart. (These will not be generated by rails for you.)

def add_to_cart
@customers_cart = current_cart

@params = params[:product]

quantity = @params[:quantity]

product = Product.find_by_id(@params[:id])

@cart_item = @customers_cart.add_product(product.id, quantity)

respond_to do |format|

if @cart_item.save

format.html { redirect_to(@cart_item.customers_cart,
 :notice => 'Item was successfully created.') }

 else

format.html { render :action => "index" }

 end

[image: image1.emf]products customers_carts

cart_items

id

name

price

id

product_id

customers_cart_id

end

 end

def show_cart

if current_cart != nil

@customers_cart = current_cart

respond_to do |format|

format.html

show_cart.html.erb

end

else

format.html { render :action => “index” }
end

end

18. Test this out on the web page by activating the server. There are now a number of additions and changes, which you can make. In a real application we would need a way to checkout once shopping is completed. And it would be helpful if customers could edit their carts either by removing an item or changing the quantity they are ordering.
[image: image4.png]Store - Mozilla Fir =D |

Eile Edit View History Bookmarks Tools Help
" store +

Google

€ P @ ocathost3 e

5 ot @ gt

Fruit Store
List all products
List Products
Find a product

Name:
Show Shopping Cart
Show Shopping Cart

an

[image: image2.png]@ Store - Mozilla Firefox (o= o |

File Edit View History Bookmarks Tools

" store

€ @ oan s v ¢

) Most Visted @ Getting Stated

U Shopping Cart

- Google |

Item was successfully created.

Help

Ll

Back

Apples |1 x_Js2.15 |s2.15
[Bananas]2 x_|s125 |s2.50
Grapes |3 x_|s2.00 |[36.00
oranges |4 x_|[s1.10 |[s4.40
Total $15.05

Empty Cart

[image: image3.png]@ Store - Mozilla M_QQM

Eile Edit View History Bookmarks Tools Help -

" store

€ @ locall

Most Visted @ Getting Saried

Fruit Store

Image:
Name: Oranges
Quantity: 60
Price: $1.10
Add to Cart

Quantity Ordered: 4

Back

