Librarian Page
Creating a controller for the librarian

Controllers receive the request from the client, create a query and send it to the database, receive the result set from the database, format it and respond to the client. They have the most work to do and end up being the largest files.
In an application that has more than one table in the database, it is convenient to have a controller that is separate from those created by the scaffold command. Such a controller is easily generated by

ruby script/generate controller librarian

This creates the following files and folder:

librarian_controller.rb in the controllers folder

librarian_helper.rb in the helpers folder

and a folder called views/librarian folder

This controller initially has only a class declaration.
class LibrarianController < ApplicationController

end
It will end up as one of the largest files in the application. The views folder is empty. The easiest way to get an erb file into it is to copy the index file from the views/books folder and then modify it. Otherwise it can be difficult to create a file with the html.erb file extension. A simple version of the web page follows.
[image: image5.emf]

CRUD – Create, Read, Update, Delete
The first thing we did was to ‘read’ the database, that is list the contents and find an object in it. The other standard functions are create, update and delete. We will take them in order and add them to the index page.
Create
The ruby command for creating a new object is very easy.

@book = Book.new(params[:book])

@book.save

We need two controller methods, one to get the parameters and the other to create the book and store it in the database. The index page calls up the new_book page which gets the parameters.

<h2>Create a book</h2>

<h3><% form_for :book, :url => {:action => :new_book} do |form| %>

<p>

<%= form.submit "Create a book" %>

</p> </h3>

<% end %>

The controller responds to the action by bringing up the new_book.html.erb page.
<h1>New book</h1>

[image: image1.emf]

<% form_for :book, :url => {:action => :create_book} do |f| %>

<%= f.error_messages %>

<p>

ISBN:

<%= f.text_field :isbn %>

</p>

<p>

Author:

<%= f.text_field :author %>

</p>

<p>

Title:

<%= f.text_field :title %>

</p>

<p>

Image:

<%= f.text_field :image %>

</p>

<p>

<%= f.submit "Create Book" %>

</p>

<% end %>

<h3><%= link_to 'Back', '/librarian' %></h3>

The action handled by the controller is create_book. It actually gets a new book, stores the parameters in it and saves it to the database.

def new_book

respond_to do |format|

format.html
Send new_book.html.erb to the client.

end

end

def create_book

@book = Book.new(params[:book])

Get a new book with the parameters.

respond_to do |format|

if @book.save

Save the book in the database.

flash[:notice] = 'The book was successfully created.'

format.html { render :action => "show_book" }

else

flash[:notice] = 'Error: The book was not created.'

format.html { render :action => "new_book" }

end

end

end
If the book is successfully created, the action invoked is the file show_book.html.erb. This file displays all the data just entered for the new book. If the save fails, a notice is sent and the client is redirected to the new book page.

Update
Updating an entry is similar. This time the contents of the row in the table are displayed for the client, who can then change any one of the fields. The form on the index page looks as follows:

<h2>Update a book</h2>

<h3><% form_for :book, :url => {:action => :edit_book} do |form| %>

<p>

<label for="isbn">ISBN:</label>

<%= form.text_field :isbn, :size => 10 %>

</p>

<p>

<%= form.submit "Update a book" %>

</p> </h3>

<% end %>
The action here is edit_book. This takes us to the edit_book method in the controller.

def edit_book

@params = params[:book]

@book = Book.find_by_isbn(@params[:isbn])

end
This method gets the parameter (isbn) from the form above and uses it to find the book. Rails provides a number of useful ‘find’ methods. Given any column (attribute) name, we can do a find_by with that name.

If the book has been successfully found, it is displayed in the page, edit_book.html.erb.

<% form_for :book, :url => {:action => :update_book} do |f| %>

[image: image2.emf]

<%= f.error_messages %>

<p>

ISBN:

<%= f.text_field :isbn %>

</p>

<p>

Author:

<%= f.text_field :author %>

</p>

<p>

Title:

<%= f.text_field :title %>

</p>

<p>

Image:

<%= f.text_field :image %>

</p>

<p>

 <%= f.hidden_field :id %>

</p>

<p>

<%= f.submit "Update" %>

</p>

<% end %>

<h3><%= link_to 'Back', '/librarian' %></h3>

Notice that the last field is a hidden field. It contains the id supplied by the rails when the data was entered into the database table. By using it, we can change any one of the fields. If we used the isbn to find the book, we would not be able to alter than entry. The action on this page is update_book. This takes us to the controller method with the same name.
def update_book

@params = params[:book]

id = @params[:id]

@book = Book.find_by_id(id)

respond_to do |format|

if @book.update_attributes(params[:book])

flash[:notice] = 'Book was successfully updated.'

format.html { render :action => "show_book"}

else

flash[:notice] = 'Book was not updated.'

end

end
end
[image: image3.png]New book

18BN:

7890-1234

Author:

Rowling

Harry Potter

Image:

potterjpg

Back

This method first gets the id from the parameters and then uses it to find the book. If it is found and updated, a notice is sent and action is redirected to the file, show_book.html.erb.
<h3>Book Data</h3>

<p>

ISBN:

<%=h @book.isbn %>

</p>

<p>

Author:

<%=h @book.author %>

</p>

<p>

Title:

<%=h @book.title %>

</p>

<p>

Image:

<%= image_tag @book.image %>

</p>

<h3><%= link_to 'Back', '/librarian' %></h3>
Clicking on Back takes the user back to the index page.

If the update was not successful, a notice is flashed to the user.

Delete

The index form to delete an entry is similar to the one for update.

<h2>Remove a book</h2>

<h3><% form_for :book, :url => {:action => :delete_book} do |form| %>

<p>

<label for="isbn">ISBN:</label>

<%= form.text_field :isbn, :size => 10 %>

 </p>

 <p>

<%= form.submit "Remove a book" %>

</p> </h3>

The action here is delete_book. This takes us to the controller method with the same name.
def delete_book

@params = params[:book]

@book = Book.find_by_isbn(@params[:isbn])

if @book != nil

respond_to do |format|

format.html

end

else

flash[:notice] = 'book was not found.'

redirect_to(:action => 'index')

end
end
This method looks for the book, using the isbn. If the result comes back empty (nil), a notice is flashed and action is redirected back to the index page. But if the result is not empty, it is displayed in the following page, delete_book.html.erb.

<h2>Delete Book</h2>

<% form_for :book, :url => {:action => :remove_book} do |f| %>

<%= f.error_messages %>

<p>

[image: image4.emf]

ISBN:

<%= f.text_field :isbn %>

</p>

<p>

Author:

<%= f.text_field :author %>

</p>

<p>

Title:

<%= f.text_field :title %>

</p>

<p>

Image:

<%= f.text_field :image %>

</p>

<p>

<%= f.submit "Delete Book?" %>

</p>

<% end %>

<h3><%= link_to 'Back', '/librarian' %></h3>
This page serves as a confirmation page. If users decide to keep the entry, they can use the Back link to return to the index page. But if they choose to remove the book, the action for the button is remove_book. The controller page for this is very simple. It finds the book and then ‘destroys’ it.
def remove_book

@params = params[:book]

@book = Book.find_by_isbn(@params[:isbn])

@book.destroy
end
The remove_book web page is even simpler. It just displays a message and then links back to the index page.

<h2>Book was removed.</h2>

<h3><%= link_to 'Back', '/librarian' %></h3>

