Model – View – Controller Pattern
Rails follows the MVC (model – view – controller) pattern closely. The model is the database, the view consists of the web pages and the controllers are the server programs. To be clear, Rails gives them the above names. So under the rails_apps/library/app folder there are subfolders called controllers, helpers, models and views.

Views

Controllers

Models
[image: image5.png]Fle Edit View History Bookmarks Tools Help

e v eui

Googlt

[http://loc

List of Books

ISBN Author Title
1234-5678 |jAusten |[Emma
[2345-6789 |Dickens _ Joliver Twist
[3456-7890 |[chekov |[The Cherry Orchard
Back

Done

[image: image2.wmf]

[image: image3.jpg]

Models
Classes to work with the database go into the models folder. These classes are subclasses of the ActiveRecord class. Note, the < sign is used for inheritance in Ruby. It is the same as extends in Java.

class Book < ActiveRecord::Base

def self.find_books

find(:all, :order => "author")

end

def self.find_a_book(title)

@book = find_by_title(title)

end

end
The self designation here means that the method is to be called by the name of the class (Book) rather than by an instance of the class. This is exactly the same as the designation static in Java. The calls will be Book.find_books and Book.find_a_book (title). Also note that the first method has no parameters and so does not require parentheses (unlike Java).

The methods use the built-in Rails methods that find objects. There are many variations on find. These are only two. The first one finds all the books in the table and returns them ordered by the authors’ names. The first parameter is a symbol and the second one a hash. We will have more to say about ActiveRecord and models later on.

The second method takes a parameter and finds the book using the title. There are find methods for every column name in the database. This one is find_by_title, but we could also have find_by_author and find_by_isbn. It returns only books that have the same title, author or isbn as the parameter.

Controllers
Classes with methods that receive requests from the client, query the database (through the model) and then respond back to the client are in the controllers folder. These are subclasses of the ApplicationController class.
class LibrarianController < ApplicationController

def index

end

def list_books

@books = Book.find_books
end

def find_book

@params = params[:book]

@book = Book.find_a_book(@params[:title])

respond_to do |format|

if @book != nil

format.html

else

flash[:notice] = 'Book was not found.'

format.html { render :action => "index" }

end

end

end

end
Controllers are the most complicated classes in Rails and do the most work. The method that lists the books is happily very simple. It just has to fill the variable @books with the data from the database.

The method that finds a single book has more to do. It must first get the book’s title from the parameter hash and then use the method, find_a_book, in the ActiveRecord class. The parameters are sent to the controller in a hash called params[:book]. From this, we have to extract the title. So the first step is to assign the whole hash to @params. And from that get the title, @params[:title]. After that we can find the book.

If the title is in the database, @book will come back with a non-nil value. If so, the controller can create a web page to respond to the client’s request. This is done by the statement, format.html. This uses the parameter, format, and tells it to format the page as html. (It could also be formatted as xml.) However, if @book comes back empty (nil), then a notice is flashed to the client and the index web page is returned.

flash[:notice] = 'Book was not found.'

format.html { render :action => "index" }

Views
Views are the web pages sent to the client. They are written in a combination of html and ERB, embedded Ruby. You are probably familiar with html tags. These tags are standardized by the w3c consortium, and web browsers recognize them and know how to display the contents that they enclose. Tags are enclosed in angle brackets and usually come in begin – end pairs. Examples are the paragraph tags, <p> and </p>. Single tags that do not have an end tag are instead terminated with a /, such as
 or <input />.

ERB tags, on the other hand, begin with <% and end with %>. If the contents of the tag are to be displayed, the tag includes an equals sign, <%= … %>. If the contents are to be executed, the equals sign is omitted. So to display the time, you can have

<%= Time.now %>

on the web page. But to perform an operation, such as to find a book, you would leave the = off.
Views come in pairs, the request page that the client sends to the server and the response page that the server sends back. The first page that the client usually sees is the index page. The first form on the index page for the library application is the following:
<h1>Librarian</h1>

<h2>List all books</h2>

[image: image1.jpg]

<h3><% form_for :book, :url => {:action => :list_books} do |form| %>

<p><%= submit_tag "List Books" %></p>
</h3>

<% end %>

This form is used to send a submit tag to the controller. The action attribute tells the browser to use the list_book method in the controller. We saw this method above.
def list_books

@books = Book.find_books

end
The controller then executes the find_books method in the model.
def self.find_books

find(:all, :order => "author")

end

This method creates the SQL (structured query language) statement that will be used to query the database. This statement is the simplest in SQL,

select * from books

The asterisk (*) means that the select statement should return all the entries in the books table of the database. The result of the query is returned in a result set, usually an array with rows and columns the same as those in the database. This data is then stored in the variable, @books. If there is something in the database table, this variable will be non-nil. Finally the controller on the server will respond to the client in another view shown below.
[image: image4.png]File Edit View History B
e »-eu
Librarian
List all books
_ListBooks | | |
Find a book
Tide:[

Find a Book
[oone

<h1>List of Books</h1>

<table>

<tr>

<th>ISBN</th>

<th>Author</th>

<th>Title</th>

</tr>

<% for book in @books %>

<tr>

<td><%=h book.isbn %></td>

<td><%=h book.author %></td>

<td><%=h book.title %></td>

</tr>

<% end %>

</table>

<%= link_to 'Back', '/librarian' %>

As you can see, the data is to be displayed in a table. The heading is given by the <th>…</th> tags. It takes up one row. The rest of the table is inside a for loop,

<% for book in @books %>

…

<% end %>

This iterates through all the rows stored in @books. The variable, book, is local to the for loop and so could be named something else. But calling it book makes it clear what kind of object is being displayed.
The last thing on the page is a link back to the main index page, called librarian in this application.

If you have written any html pages, you know that some things have been left out, such as the head, html and body tags. Since these make up part of every web page and vary little from page to page on a site, Rails stores a file containing them in views/layouts. This will be discussed more fully in the chapter on views.

