Migrations
Rails uses migrations to make changes to a database. The database itself comes bundled with InstantRails. The current one is sqlite3, but MySQL is also available. Migrations are used to add tables, add and drop columns from the tables, to alter names and add data.
When a migration file is created by the script/generate command, rails gives it a name beginning with a time stamp. The programmer should provide a name that indicates what it is to do. Rails puts them together as in 20080805165427_create_books.rb.
A Migration to Add a Table
To add a table, we use a migration that lists the columns and their types. The type, string, is a generic that rails interprets appropriately for each database. For mysql and sqlite, string is interpreted as varchar(255). But rails must interpret integer as int(11) for mysql and integer for sqlite. This helps make the application more database independent.
We added a books table using the command

ruby script/generate scaffold book isbn:string author:string title:string

Rails knows a lot of plurals for nouns. Each row of the table provides information about a book, but the whole table contains books. Rails knows a number of non-standard plurals as well, such as person/people and datum/data.

The command first lists the name for a row of the table, book, and then lists the names of the three columns with their data types. These are all strings. This generates the following SQL statement:

create table books (isbn varchar (255), author varchar (255), title varchar(255))
The code in the migration follows:

class CreateBooks < ActiveRecord::Migration

def self.up

create_table :books do |t|

t.string :isbn

t.string :author

t.string :title

t.timestamps

end

end

def self.down

drop_table :books

end

end

First, class names all begin with capital letters and use camel case. Camel case uses upper case letters to begin each new work in the name. Second, CreateBooks is a subclass of Migration in the ActiveRecord module. The ‘<’ is used to indicate inheritance. It is the same as ‘extends’ in Java.
Each migration contains two methods, one to execute the command, self.up and one to reverse it, self.down. (A method name that begins with self does not require an instance of the class to run. It is similar to ‘static’ in Java.) Notice that the self.up method is create_table while the self.down command is drop_table. The create_table command has a parameter, t. It is enclosed by pipes, |t|. Ruby can use curly braces, but it usually indicates a block with indentation and a terminating ‘end’. (Extra or missing ends are one of the most common ruby errors.)

Rails adds timestamps to the table. These set the date and time for added data.
A Migration to Add a Column
We can add or drop columns using migrations as well. The following migration adds an image field to the database.

class AddImage < ActiveRecord::Migration

def self.up

add_column :books, :image, :string

end

def self.down

remove_column :books, :image

end

end

The add_column method requires first the table name followed by the name of the new column and its data type. This translates to the SQL statement

alter table books add image varchar (255)
Adding an image column allows us to store the name of an image file in the database as a string. The actual files are stored in the folder, public/images. We can now make the listing of books look like this.
[image: image1.emf]

A Migration to Add Data
We can add books to the table one at a time using the New book link. However that is pretty slow if you have a lot of data. The solution is a migration to add data.

class AddTestData < ActiveRecord::Migration

def self.up

Book.create(

:isbn => '4567-8901',

:author => 'Chekov',

:title => 'The Cherry Orchard',

:image => 'orchard.jpg')

Book.create(etc.)

…

end

def self.down

Book.delete_all

end

end

Inserting a row into a database is one the least pleasant SQL statements. The first one above would look like:

insert into books values ('4567-8901', 'Checkov', 'The Cherry Orchard', 'orchard.jpg')

If this is done with parameters for the data it is even worse.

insert into books values ("'" + isbn + "', '" + author + "', '" + title + "', '"+ image + "'")

The single and double quotes are tricky, particularly because string data require them and other date types, such as integers, do not.

Executing a Migration
The rake command is used to execute all the migrations in the folder. It is

rake db:migrate
Rails keeps track of the most recently run migration and the above command executes all ones with greater time stamps.

If you want to reverse a migration, you run rake with the last version you want to leave in the database.

Rake db:migrate VERSION=20080805165427

Rails looks at all versions in the db/migrate folder and reverses (applies the self.down methods to) all those versions with a more recent time stamp. This is a very nice feature of rails not usually found in other application environments.
