Ruby vs. Java

Objects and Variables

Ruby is a fully object-oriented scripting language. Everything is an object. There are a few primitives in Java, such as int, double, char and boolean. In Ruby, Integer is a class with subclasses Bignum and Fixnum. The Float class contains methods for decimal numbers. There are no boolean or char types in Ruby. The values false and nil are explicitly defined, but true is not. That is because everything is assumed to be true, unless otherwise declared. Characters are simply single length strings. The character ‘A’ is the same as the string “A”.

Comparison Example
The following are two programs that do the same thing, the one on the left is in Java and the one on the right is in Ruby. The Ruby program is interpreted and can be run in a special console window. The Java program must first be compiled to bytecode before it can be executed.

Java

public class People

{
public static void main (String [] args)

{
Person girl = new Person ("Alice", 5);

girl.show_person ();

}

} // People

class Person

{
String name;

int age;

Person (String name, int age)

{
this.name = name;

this.age = age;

}

protected void show_person ()

{
System.out.println (name);

System.out.println (age);

}

} // Person

Ruby
class Person

attr_accessor :name, :age
initialize is equivalent to a constructor

def initialize (name, age)

@name = name

@age = age

end
puts is the same as println

print is the same as print

def show_person

puts @name

puts @age

end
end
girl = Person.new("Alice", 5)

girl.show_person

Instantiation and Initialization
Some differences are easy to see. Instead of Java’s

Person girl = new Person ("Alice", 5);
Ruby has

girl = Person.new("Alice", 5)

and the constructor in Java is an initialize method in Ruby. Ruby uses def..end instead of braces for method bodies and requires semi-colons at the end of statements only when several statements are on the same line.

Java requires that each variable be declared with a type, ie. String name; Ruby only assigns a type when a value is assigned to the variable. Ruby variables begin with the @ sign, as in @name. Also Java comments begin with a double slash //, while Ruby comments begin with #. Ruby comments, like the double slash comments in Java only extend to the end of the line.

Interactivity
The Java People class is a simple program that instantiates a class called Person and then executes its show_person method. Since Ruby is interactive, the Person class is executed in the irb (Interactive Ruby) console window as shown below.

[image: image1.png]attr_accessor iname, ‘age
def Initialize (name, aged
@nane = nane
Gage = age
end
def show_person
puts Gnane
puts Bage

hnain>:012:0> girl
i<Person:@x2hbefed Gage=!
ivh(nain>:813:8> girl.shou_person

Variables, Accessors and Mutators
Variables in Ruby do not have a type until they are assigned a value. At that time they take on the type of the value, i.e. name is a String, since it has been assigned the string, "Alice", when initialized and age is a Fixnum because 5 is. The line in the Ruby program

attr_accessor :name, :age
is a shortcut that creates accessor and mutator (getters and setters) methods for the variables @name and @age. This means that we can have statements such as

girl.name = "Betty"

girl.age = 7

With this, the girl’s name changes to Betty and age to 7.

The colons in the attr_accessor statement are used to create symbols. These are not variables, but instead they refer to the names of the variables. They are not instantiated and so do not reference locations in memory. But they do name objects. They appear to be unique to Ruby.
Hash Tables and Arrays
The most frequently used data structure in Ruby is a hash table. This is a collection of key – value pairs and is similar to Hashtable and HashMap in Java. It is an associative array. The keys and values may be of any type, and the keys should be unique. Most often the keys are symbols, but that is not required. In Rails, parameters are sent from html forms to the server in a hash. An example would be

"book" => {"isbn"=>"1234-5678", "title" => "Emma", "author" => "Austen"}
Here the hash is called book and the key – value pairs are separated by commas and stored in curly braces. This could also be written as

"book" => {:isbn=>"1234-5678", :title => "Emma", :author => "Austen"}

using symbols instead of quotation marks for the keys. The values are strings and so still contain the quotes.
Ruby also has arrays, which are similar to those in Java. They are indexed by integers beginning with zero. A difference, however, is that Ruby arrays may contain objects of different types. In Java (and C++) all the objects in an array must be of the same type. Arrays do occur, but not nearly as often as hash tables.
Blocks
Blocks in Java are denoted by curly braces. Thus in the People example, curly braces are used to indicate where the classes and methods begin and end. The same can be done in Ruby, but using curly braces is usually only used when there is a single line. When there are several lines, the keyword end is used. The method in the example shows this.
def show_person

puts @name

puts @age

end
Indentation is almost a necessity here; otherwise it is difficult to pair up def – end.

But blocks also occur in other places. For example, the following is from the controller for the book table in the library database.
respond_to do |format|

format.html # new.html.erb

format.xml { render :xml => @book }

end
Control Structures
Ruby has many of the same control structures found in Java and C. The if – else construct is much the same, but it has to be terminated by an end.
if @book != nil

format.html

else

flash[:notice] = 'Book was not found.'

format.html { render :action => "index" }

end
In the case where there are several clauses in the if statement, Ruby uses the keyword, elsif.

if condition1

statement1

elsif condition2

statement2

else

statement3

end

There are a number of iteration structures including a for loop. It is the most common, but Ruby has others as well, including while and until. There are a number of variations on these as well, determined by where a block goes. Here are a few examples.

@books = ["Emma", "Oliver Twist", "Hamlet"]
for book in @books do

puts book

end

i = 0

while i < 3

puts @books[i]

i += 1

end

Both of these loops produce

Emma

Oliver Twist

Hamlet
Methods and Parameters
Methods begin with the keyword def and are terminated with end. They can have parameters enclosed by parentheses, separated by commas. Types are determined by usage and not preset. Parameters also occur in control structures such as a for loop. The following is commonly used to list all objects in a database table.

<% form_for(@book) do |f| %>

<p>

<%= f.label :isbn %>

<%= f.text_field :isbn %>

 </p>

…
<p>

<%= f.submit "Create" %>

</p>

<% end %>

The parameter here is f (indicated in bold). This type of parameter is enclosed by vertical lines rather than parentheses.

