Views
The view presented to the client may consist of a number of different parts and use html (hypertext markup language), ERB (embedded Ruby), JavaScript and CSS (cascading style sheets).
HTML Forms

Web pages are used both for finding information provided by the web master and for making requests and receiving responses. Many web sites are simply a collection of pages linked together, with one page usually called index that serves as the entry way to the site.

However, sites that sell products or answer questions must have a means for gathering the client’s information. This is done with html forms. Html consists of a number of tags that web browsers recognize and understand. Tags are enclosed in angle brackets and usually come in begin – end pairs. Examples are the paragraph tags, <p> and </p>. Single tags that do not have an end tag are instead terminated with a /, such as
 or <input />.
Form tags come in pairs with the opening tag containing much of the information. An example of a form used to find a book in a library catalog might look like the one below.

<h3>Enter the author of the book.</h3>

<form method="post" action="http://localhost:3000/library/find">

<p>

Title:

<input type = "text" name="title" value = "" size = 20 />

</p>

<p><input type= "submit" value="Find a Book" /></p>

</form>

The opening tag has two important attributes, method and action. It contains a single text field to collect the title and a submit button to send the request to the server.

The method in the example is a post. There are a number of other methods that can be used, but the two most common are get and post. Both methods send the form to the server along with the data that was entered, in this case a title. These values are called parameters. Rails abbreviates this to params.

The difference between get and post is the manner in which the parameters are sent to the server. If the method is get, the browser will encode the parameters into the URL string, the string that is used to find the server. An example would be

http://localhost:3000/library/find? title ="Oliver Twist"
Here the action is used to find the appropriate program on the server and the parameters follow the question mark. If the method is post, however, the parameters are stored within the packet sent to the server.

Rails handles a lot of this behind the scenes. For one thing, any request that involves parameters is sent as a post so that the values will be hidden. And the parts of the form are filled in using ERB, embedded Ruby. This is very similar to JSP (Java server pages) and ASP (active server pages).

The following is the embedded Ruby that would be written to find a book given the title.

<h2>Find a book.</h2>

<h3><% form_for :book, :url => {:action => :find_book} do |form| %>

<p>

<label for=" title "> Title:</label>

<%= form.text_field : title, :size => 20 %>

</p>

<p><%= submit_tag "Find a Book" %></p></h3>
<% end %>
And this is what the actual html looks like. Note the hidden field that contains an authenticity token. Rails always includes these in forms.

<h2>Find a book</h2>

<h3><form action="/librarian/find_book" method="post">
<div style="margin:0;padding:0"><input name="authenticity_token" type="hidden"
value="37b0064f981dfc343096cee38aa3d71b5358baf5" /></div>

<p>

<label for=" title "> Title:</label>

<input id="book_ title " name="book[title]" size="20" type="text" />

</p>

<p><input name="commit" type="submit" value="Find a Book" /></p></h3>

</form>
Forms are only one part of the view. Layouts are next.

Layouts
The head and foot are contained in an ERB (embedded Ruby) file stored in the views/layouts subfolder. One created by Rails for the librarian page is:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html; charset=UTF-8" />

<title>Librarian: <%= controller.action_name %></title>

<%= stylesheet_link_tag 'scaffold' %>

</head>

<body>

<p style="color: green"><%= flash[:notice] %></p>

<%= yield %>

</body>

</html>

The DOCTYPE tag is a standard one for html pages. The next tag refers to the xml namespace on the w3.org web site. This too is standard. The meta tag in the head says that the content is either text or html and the character set is UTF-8. UTF-8 is a version of Unicode that uses the standard western character set. The title is Librarian followed by the name of the action that was taken, and the stylesheet is the one created by the scaffold command. You can add another stylesheet or even replace the one given. Also note that the line

<p style="color: green"><%= flash[:notice] %></p>

includes its own style requirement.
The <%= yield %> line is very interesting. Yield is a Ruby command that turns control over to the rest of the web page. When that page is finished, control comes back to where it left off, thus adding the foot (</body></html>) to the page.

Since all the pages on a website usually have the same head and foot, this saves the developer a lot of copying and pasting. Rails automatically adds the layout to the page before it is returned to the client. Not only does this save time and effort, but it ensures that the site will have a consistent appearance over all the pages.

Cascading Style Sheets

The scaffold command provides a style sheet, stored in the public/stylesheets folder. You can add another stylesheet there, such as librarian.css. If so, it can be added to the stylesheet line in the layout above.

<%= stylesheet_link_tag 'scaffold', 'librarian' %>

One such stylesheet follows.

/* Styles for librarian/index */

table{

border: 1;

border-style: solid;

border-width: thin;

cellpadding: 10;

}

td {

border-style: solid;

border-width: thin;

padding-right: 0.5cm;

}

This stylesheet provides borders for the table that lists all the books. Most web sites would have a considerably more elaborate one.
