Review of Ruby and Rails
1. Set up Ruby on Rails using RailsInstaller. It is available from railsinstaller.org.

2. Check the differences between Java and Ruby.

3. Create a Rails project. Note all the files created. Create the database using rake.
rails new grocery

rake db: migrate

4. Create a table in the project using scaffold.
rails generate scaffold product name:string quantity:integer price:decimal

rake db:migrate

5. The scaffold command created a migration. Migrations are used to modify the database by either creating a new table or altering an existing one. The migration that the scaffold command created follows. Its name is 20111027134428_create_products.rb. The long number is a time stamp. The rake command is used to activate migrations.
class CreateProducts < ActiveRecord::Migration

def self.up

create_table :products do |t|

t.string :name

 t.integer :quantity

 t.decimal :price

 t.timestamps

end

 end

def self.down

drop_table :products

end

end

6. Add a cascading style sheet to the stylesheets folder. Add validation statements to the models folder.

product.rb
class Product < ActiveRecord::Base

validates :name, :quantity, :price => true

validates :quantity, :numericality => {:greater_than_or_equal_to => 1}

validates :price, :numericality => {:greater_than_or_equal_to => 0.01}

validates :name, :uniqueness => true
end
table.css
table{

border: 1;

border-style: solid;

border-width: thin;

cellpadding: 10;

}

td {

border-style: solid;

border-width: thin;

padding-right: 0.5cm;

}

7. Forms in html and extended Ruby have a method and action. The action in the following form is find_product. That is the name of the controller method that is to handle this request.
<% form_for :product, :url => {:action => :find_product} do |form| %>

<p>

<label for=" title "> Name:</label>

<%= form.text_field :name, :size => 20 %>

</p>

<p><%= submit_tag "Find a Product" %></p>

8. The controller method receives the parameter/s from the request, queries the database table for the answer and then returns a response. Rails has find methods for each attribute in the table. This one is find_by_name. After querying the table, the method creates a response. If the product was found, it returns a view with the same name as the method. Otherwise if returns a separate view that only reports that the product was not found.
def find_product

@params = params[:product]

@product = Product.find_by_name(@params[:name])

respond_to do |format|

if @product != nil

format.html

else

format.html { render :action => "not_found" }

end

end

end

9. The view sent in response displays the data found for the product. It has the same name as the controller method that sent it. The class variable, @product, is included in the response page.
<p>

Name:

<%= @product.name %>

</p>

<p>

Quantity:

<%= @product.quantity %>

</p>

<p>

Price:

<%= @product.price %>

</p>

10. All views sent by Rails are enclosed by a layout. It is provided when the project is set up. The yield command in the middle is used to yield control to the main body of the view. Any style sheets and JavaScript documents will be added to the view.
<!DOCTYPE html>

<html>

<head>

<title>Grocery</title>

<%= stylesheet_link_tag :all %>

<%= javascript_include_tag :defaults %>

<%= csrf_meta_tag %>

</head>

<body>

<%= yield %>

</body>

</html>

11. Models, views and controllers can be created without using the scaffold command. Rails generate command can be used to create a number of objects.
controller, integration_test, model, migration, mailer, plugin, scaffold, session_migration, metal, observer, resource, helper, performance_test

rails generate controller grocery index list_products find_product
12. The generate command creates a controller, three views and adds to the routes file. It does not change the database, so the rake command is not needed.
a. The controller that was generated only has stubs for methods. Filled out it appears below.

class GroceryController < ApplicationController

def index

end

def list_products
@products = Product.find(:all, :order => "name")

end

def find_product
@params = params[:product]

@ product = Product.find_by_ name (@params[:name])

respond_to do |format|

if @product != nil

format.html

else

format.html { render :action => "not_found" }

end

end

end

end

b. The views are also stubs. The one for the index follows.

<h1>Listing products</h1>

<table>

<tr>

<th>Name</th>

<th>Quantity</th>

<th>Price</th>

</tr>

<% @products.each do |product| %>

<tr>

<td><%= product.name%></td>

<td><%= product.quantity %></td>

<td><%= product.price %></td>

</tr>

<% end %>

</table>
c. Rails adds three new routes to route.rb. Two must be changed for gets to posts. If these are not changed, Rails will not be able to find the appropriate methods and views.
get "grocery/index"

post "grocery/list_products"

post "grocery/find_product"

13. To add more methods and views to the controller, we can use generate controller with a –s. This tells Rails to skip anything already there.
rails generate controller grocery new_product create_product edit_product update_product delete_product -s
Again all the routes created are gets and have to be changed to posts. The generate command does not add any methods to the controller, but that is not a problem. It does provide stubs for all the views. Otherwise it can be difficult to create ERB files (in Windows). The controller code is in an appendix.
14. The views can pretty much be adapted from those created by the scaffold command. The exception is index.html.erb. This file is also in the appendix. The route in routes.rb for the index file is a get. The rest are all posts. Since we want the index file to be the one that is accessed first, we can change the commented line near the end,
root :to => "welcome#index", to

root :to => 'grocery#index', :as => 'grocery'

If you then delete index.html in the public folder, you can access your application using

http://localhost:3000
