Sessions
HyperText Transfer Protocol (HTTP) was not designed to aid web sites in tracking users’ activities. When a user makes a request for a browser page, the server responds to the request and then disconnects. The server can store the IP (Internet Protocol) address, but it may not be unique. Often several computers share the same IP address.

Web sites need some way besides the IP address to keep track of their visitors. This is especially true of on-line stores. Users typically put something in their shopping cart and then continue shopping on the site. And stores want to encourage this behavior. They want customers to buy a number of products when they visit.

There are two ways for web sites to track user activity. One is by depositing a cookie on the user’s hard drive, and the other is URL rewriting. There are several kinds of cookies, but the one that we will look at just puts some text into temporary storage and deletes it when finished. URL rewriting involves adding an identification number to the URL string. This is actually less safe than storing a cookie, since the string is sent unencrypted, and use of the back button on the browser can destroy it.

The session is a part of a Rails application whether it is used or not. Data in it are stored as a hash. The session only has room for 4K, so you can’t put very much in it. So the easiest thing to do is to just use the session to store the shopping cart id. The cart itself can be stored in a database table or a flat file.
The following application is designed so that a student can select courses for his or her schedule.
Registration Application

We can add the equivalent of a shopping cart to our schedule application. There is one important change. In a shopping cart, buyers are allowed (maybe even encouraged) to select several copies of the same item. But when registering, students pick a course only once.

We assume that we have the same schedule application as before. It allows students to list courses and find courses, but they cannot create or delete courses. That is left to the system administrator and scheduling staff.

[image: image4.png]%) Schedule - Mozilla Firefox
Edt Vew Hstory Bookmarks Tols Heh

< phews | @ Thetewvor.. | | schede

&)2 @ -0 ety -[e) (-]

Nerton- | search |

Course was successfully added

[cs 121 |[computer Pragramming 1

[Eng 110 |[composition 1

[Total credits

Empty Cart

Back

In an actual application, students have to sign into their university accounts in order to register. This application allows them to gather a selection of courses before doing so. They will have to sign in before they can save the courses to their schedule. This is the way many shopping sites work. They allow a customer to add items to a shopping cart before they check out and provide credit card numbers.
This means that we have to create a connection between the courses chosen and the session id. The session is a stand-in for the student/user at this point. The most efficient way to handle this is by creating a new table for our database that connects the two. The fields will be the course id and the connection to the session.
The connection to the session can be managed in several ways, but perhaps the easiest is to simply create a table that will maintain a connection to the session. We can call this table cart. It needs only to have a single field, the id that Rails always provides. We can use a scaffold command to create it. (Don’t for get to create the actual table using rake db:migrate.)

rails generate scaffold cart

Once we have it, we can store the cart id in the session by adding the following to the application controller

class ApplicationController < ActionController::Base

protect_from_forgery

private

def current_cart

Cart.find(session[:cart_id])

rescue ActiveRecord::RecordNotFound

cart = Cart.create

session[:cart_id] = cart.id

cart # return the cart
end

end

Next we need a table to store the courses chosen by the student. This contains cart id – course id pairs. When a student clicks on a button to add the course to his/her schedule, the course id and the cart id are inserted into the table. Again it is easiest to create this table using the scaffold command.

rails generate scaffold choice cart_id:integer course_id:integer

There are now a number of models, controllers and views that have to be changed. Start with the models. Add the following lines to choice.rb in the model folder.

class Choice < ActiveRecord::Base

belongs_to :course

belongs_to :cart

def credits

course.credits

end

end
The first two lines create a connection between items in the choice table and id’s in the course and carts tables. The credits method is only used to return the credits for the course that is being added.

The class stored in course.rb already has validation commands in it. We can now add connection ones.

class Course < ActiveRecord::Base

default_scope :order => 'number'

has_many :choices

validates :number, :name, :credits, :presence => true

validates :credits, :numericality => {:greater_than_or_equal_to => 1}

validates :number, :uniqueness => true

end

The first line, default_scope :order => 'number', tells the model to always order the results of a query by the course number. The next line connects the course table to the choices one. This means that one course could be in many student carts.
Finally the cart model requires a complete rewrite.

class Cart < ActiveRecord::Base

has_many :choices, :dependent => :destroy

def add_course(course_id)

current_choice = choices.where(:course_id => course_id).first

if current_choice == nil

current_choice = Choice.new(:course_id => course_id)

choices << current_choice #appends a value

end

current_choice #returns a value

end

def total_credits

choices.to_a.sum { |list| list.credits}

end

end

Again this class connects the cart with the choices class, just as the course class did. It also removes all dependent records in choices if the main record is destroyed. This is useful when emptying the cart.

The method, add_course, checks to see if the course is already in the cart. If not, it adds it to the cart by appending it to the choices already there. If it is in the cart already, it returns it, but it does not add it again. The total_credits method adds up all the credits in the cart and returns the value.

There are two views to fix. The first is in list_courses in the schedule folder. We have to add a button so that students can add a course to their cart.
[image: image2.png]%) Schedule - Mozilla Firefox
fle Edt ew Hgory ookmarks Dol Hep

| ©coogetiows | & The ew YorkTime.. | | schede

x | Biea - LaGuarda .| +

€)> © - [htpifocahost:a000/scheduelist_course:

MISIE M Pk

Norton- [sern |

@ setewen - @ enty Sate -

Listing courses

Number Name credits

s 113 [Formal Discrete Structures |4

[Add Course to Schedule

cs 121 [[Computer Pragramming 1 &

[Add Course to Schedule

Eco 105 [Micro

[Add Course to Schedule

Eng 110 [Composition 1

[Add Course to Schedule

Back

Here is a portion of the code.
<% @courses.each do |course| %>

<tr>

<td><%= course.number %></td>

<td><%= course.name %></td>

<td><%= course.credits %></td>

<td><%= button_to "Add Course to Schedule", choices_path(:course_id => course.id) %>

</tr>

<% end %>
When the button above is clicked, the id of the course chosen is sent to the choice controller. To handle this we have to change the create method in the controller. The code here is somewhat more complicated.

POST /choices

POST /choices.xml

def create

@cart = current_cart
found in application controller

course = Course.find(params[:course_id])

current_choice = Choice.find_by_course_id(course.id)

if current_choice == nil
This is a new addition.
@choice = @cart.add_course(course.id)

respond_to do |format|

if @choice.save

format.html { redirect_to(@choice.cart,
:notice => 'Course was successfully added.') }

else

format.html { render :action => "new" }

end

end

else

@choice = current_choice

respond_to do |format|

format.html {redirect_to(@choice.cart,
:notice => 'Course was a duplicate and not added.') }

end

end

end
First the method gets the current cart’s id from the session using the application controller. It then uses the id it received from the web page to find the course in the choices table. (Remember this table contains cart/course pairs.) If this course, the current_choice, has not yet been added to the table, it now is and a notice is flashed to the user. However, if it is already in the cart, no changes are made and a notice to this effect is flashed back. In either case, control is redirected to the show web page in the views/carts folder.

<p id="notice"><%= notice %></p>

<table>

<% for item in @cart.choices %>

<tr>

<td><%= item.course.number %> </td>

<td><%= item.course.name %></td>

<td><%= item.course.credits %></td>

</tr>

 <% end %>

<tr>

<td colspan="2">Total Credits</td>

<td><%= @cart.total_credits %></td>

</tr>

</table>

<p><%= button_to "Empty Cart", @cart, :method => :delete, :confirm => 'Are you sure?' %></p>

<p><%= link_to 'Back', schedule_index_path %></p>

[image: image1.png]%) Schedule - Mozilla Firefox
fle Edt Vew Hgory ookmarks Dol Hep
[schede

List all Courses

d a Course

Course Number:

[image: image3.png]%) Schedule -

Mozilla Firefox

Bl Edt Vew Hstory Bookmarks Tooks

< phews | @ Thetewvor.. | | schede

Help

€20

Course was

- (B i 17 -[e]

Nerton- | search |

a duplicate and not added.

cs 121

[Computer Pragramming 1

[Eng 110

[composition 1

[Total credits

Empty Cart

Back

Finally the method that empties the cart is in the carts controller. When finished, the code left by the scaffold command sends the user back to a carts page. This is very confusing. To fix this, go into the carts controller and change the redirection in the delete method.

DELETE /carts/1

DELETE /carts/1.xml

def destroy

@cart = Cart.find(params[:id])

@cart.destroy

respond_to do |format|

format.html { redirect_to(schedule_index_url) }

format.xml { head :ok }

end

end

� Some web stores have decided not to deal with users that have set their browsers to refuse cookies.

Web sites with heavy traffic can use GUIDs. A GUID is a Global Unique IDentifier. Generally, a GUID consists of a random number created using the time on the computer in nanoseconds and some feature of the server. In the past this was the network card MAC (Media Access Control) address. But after the Melissa worm used this to infect computers world-wide, Microsoft changed the GUID algorithm. The string, 3F2504E0 4f89 11D3 9A 0C 03 05 E8 2C 33 01, is an example of a GUID. The numbers are in hexadecimal.

