The Controller and Forms
In this document we will create an on-line order application for a pizzeria. The restaurant gives people a number of options, including a choice of crusts, sizes, toppings and delivery times. It also collects their addresses and telephone numbers. We will use radio buttons, select drop-down boxes, checkboxes, date select boxes, time select boxes, a text area and a text field. Also we will generate a controller and views without using the scaffold command.
The controller is created first. This can be done with the following command:

rails generate controller pizza index order

This command has a number of consequences.

First, it creates a controller called pizza_controller.rb. This controller has two methods, index and order. Both methods are just stubs containing no code, which will have to be added.

Second it puts two new routes in routes.rb. These are get “pizza/index” and get “pizza/order”. These are used to route traffic from the web page to the appropriate method in the controller. The first get is all right as is, but the second route must be changed to post, since the form sends parameters. (post “pizza/order”).

Third it creates two new ERB files in the views/pizza folder. These are index.html.erb and order.html.erb. They are also both stubs that must be filled in. The index file will have a form to send the information to the server. And the order file will create a page summarizing the choices made. The index file looks like

<h1>Pizzeria</h1>
<%= form_for :pizza, :url => {:action => :order} do |form| %>

…

<p>
<%= form.submit "Select your pizza order." %>
[image: image1.emf]

</p>
<% end %>
The three dots show where erb code needs to be
filled in.
The filled in form might look like the screen shot
on the right.

Radio Buttons

Radio buttons are used to make choices where only
one answer is allowed. Here we give the user a
choice of plain white crusts or whole wheat crusts.
The only code needed in the index file is
<p>
<%= form.label :crust %>:
<%= form.radio_button :crust, Plain White' %>
<%= form.label :plain_white %>
<%= form.radio_button :crust, 'Whole Wheat' %>
<%= form.label :whole_wheat %>
</p>
In the form_for statement at the beginning of the index page, the parameter identifier given is pizza and the action is order.

<%= form_for :pizza, :url => {:action => :order} do |form| %>
This means that the parameter hash is called pizza and the order method in the controller is the one to handle the request. Thus the first line in the order method is

def order
@params = params[:pizza]
This puts the parameter hash into @params.

To get the value for the crust, we have only to write

@crust = @params[:crust]
Finally in the response page, we can have the line

<h3>The crust is <%= @crust %>.</h3>
This will display the words The crust is followed by the value chosen by the user.
Drop_down Select Boxes
Drop-down select boxes look different, but they are treated very much the same by Rails. The code in the index form is

<p>
<%= form.label :size %>:
<%= form.select :size, {:Small => "small", :Large => "large"} %>

</p>
The code in the order method is

@size = @params[:size]
and the response page has

<h3>The size is <%= @size %>.</h3>
By default, the first value listed (small) will be shown initially in the box.
Check Boxes

Check boxes are more of a problem. All the choices listed are sent in and assigned either a 1 for checked or a 0 for not checked. In the example shown, the first and last are checked but not the middle. So “mushrooms” is assigned 1, “pepperoni” is assigned 0 and “vegetables” is again 1.
The code in the index file is

<p>
<%= form.label 'toppings' %>:
<%= form.check_box :mushrooms %>
<%= form.label :mushrooms %>
<%= form.check_box :pepperoni %>
<%= form.label :pepperoni %>
<%= form.check_box :vegetables %>
<%= form.label :vegetables %>
</p>
This time the order method has to collect the selections with a 1. One way to do this is to add them to an array, which can then be sent to the user.

@toppings = Array.new
if @params[:mushrooms] == "1"
@toppings << "Mushrooms"
end
if @params[:pepperoni] == "1"
@toppings << "Pepperoni"
end
if @params[:vegetables] == "1"
@toppings << "Vegetables"
end
(Arrays are objects and so must be instantiated before being assigned values.)
The response page then receives this array and arranges the results in an un-ordered list.
<h3>The toppings you chose are:

<% @toppings.each do |topping| %>

<%= topping %>

<% end %>

</h3>
(A loop like the one above should not have the ‘=’ sign after the ‘<%’.)

Date and Time Boxes
Rails provides helpers to produce the date and time boxes. They generate the twelve month names and the 60 minutes in the hour. Take a look at the page source when you use this. It is quite extensive. Again the code in the index file is very simple.

<p>
<%= form.label :delivery_date %>
<%= form.date_select(:delivery_date) %>
</p>
<p>
<%= form.label :delivery_time %>:
<%= form.time_select :delivery_time %>
</p>
(Both can actually be done together using just time_select.)

But the parameters sent in are somewhat unexpected. They are followed by “1i”, “2i”, etc. where 1 is for year, 2 is for month, 3 is for day, 4 is for hour and 5 is for minute. So the first date parameter sent is “delivery_date(1i)” => “2011”.
The controller code must take this into account. The following does just that.

@delivery_year = @params["delivery_date(1i)"]
@delivery_month = @params["delivery_date(2i)"]
@delivery_day = @params["delivery_date(3i)"]
@delivery_hour = @params["delivery_time(4i)"]
@delivery_minute = @params["delivery_time(5i)"]
This can be displayed on the response page with]

<h3>

The delivery date is

<%= @delivery_month %>/<%= @delivery_day %>/<%= @delivery_year %>,

and the delivery time is

<%= @delivery_hour %>:<%= @delivery_minute %>.
</h3>
Text Arrays

A text array is a box with rows and columns. The data sent in the parameter hash is the entire string concatenated together with lines separated by “\r\n”. This can be displayed as is if desired.

The form code in the index file is

<p>

<%= form.label :address, :style => 'float: left' %>

<%= form.text_area :address, :rows => 3, :cols => 40 %>
</p>
This will place the box on the left with 3 rows and 40 characters across.

The controller code and response code are straightforward.

@address = @params[:address]
and

<h3>

The address is <%= @address %>.
</h3>
Text Fields
Text fields are similar to text arrays. The index file code is

<p>

<%= form.label :telephone %>

<%= form.text_field :telephone %>
</p>
The controller code is @telephone = @params[:telephone] and the response page has

<h3>

The telephone number is <%= @telephone %>.
</h3>
[image: image2.emf]

Link back to index page

On the response page it is helpful to include a
link back to the index page. This is done with

<%= link_to “Back” pizza_order_path %>

Response Page

The response page appears to the right.
The index, controller and order pages

The index page, controller and order page

The file, index.html.erb

<h1>Pizza Store</h1>
<%= form_for :pizza, :url => {:action => :order} do |form| %>
<p>
<%= form.label :crust %>:
<%= form.radio_button :crust, Plain White' %>
<%= form.label :plain_white %>
<%= form.radio_button :crust, 'Whole Wheat' %>
<%= form.label :whole_wheat %>
</p>
<p>
<%= form.label :size %>:
<%= form.select :size, {:Small => "small", :Large => "large"} %>

</p>
<p>
<%= form.label 'toppings' %>:
<%= form.check_box :mushrooms %>
<%= form.label :mushrooms %>
<%= form.check_box :pepperoni %>
<%= form.label :pepperoni %>
<%= form.check_box :vegetables %>
<%= form.label :vegetables %>
</p>
<p>
<%= form.label :delivery_date %>
<%= form.date_select(:delivery_date) %>
</p>
<p>
<%= form.label :delivery_time %>:
<%= form.time_select :delivery_time %>
</p>
<p>

<%= form.label :address, :style => 'float: left' %>

<%= form.text_area :address, :rows => 3, :cols => 40 %>
</p>
<p>

<%= form.label :telephone %>

<%= form.text_field :telephone %>
</p>
<p>
<%= form.submit "Select your pizza order." %>
</p>
<% end %>
The file pizza_controller.rb

class PizzaController < ApplicationController
def index
end
def order
@params = params[:pizza]
@crust = @params[:crust]
@size = @params[:size]
@toppings = Array.new
if @params[:mushrooms] == "1"
@toppings << "Mushrooms"
end
if @params[:pepperoni] == "1"
@toppings << "Pepperoni"
end
if @params[:vegetables] == "1"
@toppings << "Vegetables"
end
@delivery_year = @params["deliver(1i)"]
@delivery_month = @params["deliver(2i)"]
@delivery_day = @params["deliver(3i)"]
@delivery_hour = @params["delivery_time(4i)"]
@delivery_minute = @params["delivery_time(5i)"]
@address = @params[:address]
@telephone = @params[:telephone]
respond_to do |format|
format.html
end
end
end
The file, order.html.erb

<h1>Pizza Order</h1>
<h3>The crust is <%= @crust %>.</h3>
<h3>The size is <%= @size %>.</h3>
<h3>The toppings you chose are:

<% @toppings.each do |topping| %>

<%= topping %>

<% end %>

</h3>
<h3>

The delivery date is

<%= @delivery_month %>/<%= @delivery_day %>/<%= @delivery_year %>,

and the delivery time is

<%= @delivery_hour %>:<%= @delivery_minute %>.
</h3>
<h3>

The address is <%= @address %>.
</h3>
<h3>

The telephone number is <%= @telephone %>.
</h3>
<%= link_to “Back” pizza_order_path %>

�

�

