The Controller: Create, Update and Delete
We have added forms to the schedule’s index file that list all the courses on the schedule and find a particular course. Other operations we will want to be able to perform are adding a new course (create), making changes to an existing course (update) and dropping an unwanted course (delete). If we refer to list and find as read, then we have CRUD as it’s usually referred to by developers. We will do the CUD part here.

The controller mediates between the user and the database. It takes requests from the user from html forms, sends the request to the database using SQL (structured query language), gets the answer from the database and formats the response as an html page. Rails hides the SQL from the programmer, but if you look at the actual query sent to the database in the command window, you will see it.

Each view is stored in a separate ERB file. But all the server methods are in a single controller. The list and find operations were handled by single methods on the controller. But the CUD operations each require two. They first have to either find and display the information (update and delete) or present a template to be filled out with the new course information (create).

There are several ways to create the ERB files needed. One is to copy some previously create ERB file into the folder, rename it and then replace the contents. The other is to generate it using Rails. This is done by:

rails generate controller schedule new_course show_course -s
This will not change the controller, since it already exists. And the -s at the end is an option that says to skip existing files. After typing this, you will have two new ERB files, new_course.html.erb and show_course.html.erb. There will also be two new routes added to routes.rb in the config folder. They will both be gets. The one for show_course should be changed to a post.

Create

To add a new course, we have to add a form to the index file that will send us to a page where we can enter the data for the new course. This form in turn will send the data to the server and on to the database, where a new record can be added. We already made sure that the form will be completely filled out with no duplicate numbers and credits greater than or equal to one. This was done when we added validate code to ActiveRecord.

class Course < ActiveRecord::Base

validates :number, :name, :credits, :presence => true

validates :credits, :numericality => {:greater_than_or_equal_to => 1}

validates :number, :uniqueness => true

end
The new_course file requires a form with empty text fields. You can either adapt the _form.html.erb and new.html.erb files created by the scaffold command, or create a new one. Since it is so simple, it is shown below.
<h1>New course</h1>

[image: image1.png]Edt Vew Hgtory fooknarks Tools

& thetenYor.. | [Testapp

New course

Number:

Credits:

Add Course

Back

e

<%= form_for :course, :url => {:action => :create_course} do |f| %>

<p>

Number:

<%= f.text_field :number %>

</p>

<p>

Name:

<%= f.text_field :name %>

</p>

<p>

Credits:

<%= f.text_field :credits %>

</p>

<p>

<%= f.submit "Add Course" %>

</p>

<% end %>

<h3><%= link_to 'Back', schedule_index_path %></h3>

The controller code is pretty straightforward. It has to get the parameters from the form, create a new object and send it to the database. If this is successful it shows the result to the user. But if something invalidates the conditions set for the model, it will keep the user on the new course page.
def new_course

respond_to do |format|

format.html # new_course.html.erb

end

end

def create_course

@course = Course.new(params[:course])

respond_to do |format|

if @course.save

flash[:notice] = 'The course was successfully created.'

format.html { render :action => "show_course" }

else

flash[:notice] = 'Error: The course was not created.'

format.html { render :action => "new_course" }

end

end

The form added to the schedule’s index page is short, since all it has to do is bring up the new_course file.
<h2>Add a Course</h2>

<h3><%= form_for :course, :url => {:action => :new_course} do |form| %>

<p>

<%= form.submit "Add Course" %>

</p>

<% end %>

</h3>

 Finally, show_course.html.erb can look as follows:
<p>

Number:

<%= @course.number %>

</p>

<p>

Name:

<%= @course.name %>

</p>

<p>

Credits:

<%= @course.credits %>

</p>

<%= link_to 'Back', schedule_index_path %>

Update
Updating an item in a database is a little tricky. If you want to change the primary field, here the course number, you can’t use it to save the record. The way around this is to use the id field automatically supplied by Rails. Every record has one. Since this is of no interest to users, it can be stored in a hidden field that will not be visible on the web. But it will still be a parameter that the controller can use to manipulate the record.

The form on the index page uses the course number to find the record.

<h2>Update a Course</h2>

<h3><%= form_for :course, :url => {:action => :edit_course} do |form| %>

<p>

<label for="number">Course Number:</label>

<%= form.text_field :number, :size => 10 %>

</p>

<p>

<%= form.submit "Update Course" %>

</p>

<% end %>

</h3>
The action in the form sends control to the edit_course method in the controller.

def edit_course

@params = params[:course]

@course = Course.find_by_number(@params[:number])

if @course == nil

flash[:notice] = 'The course was not found.'

redirect_to(:action => "not_found")

end

end

This method finds the course using the course number. If the course was found, it sends edit_course.html.erb back to the user, filled in. If not, it sends a file that just informs the user that the course was not found. The edit_course file contains the id generated by Rails in a hidden field. It can then be used to return the modified record to the database.
<h1>Editing course</h1>

<%= form_for :course, :url => {:action => :update_course} do |f| %>

<p>

Number:

<%= f.text_field :number %>

</p>

<p>

Name:

<%= f.text_field :name %>

</p>

<p>

Credits:

<%= f.text_field :credits %>

</p>

<p>

<%= f.hidden_field :id %>

</p>

<p>

<%= f.submit "Update" %>

</p>

<% end %>

<h3><%= link_to 'Back', schedule_index_path %></h3>

The action for this form is update_course, another controller method. Note that it uses the id to find the record in the database.
def update_course

@params = params[:course]

id = @params[:id]

@course = Course.find_by_id(id)

respond_to do |format|

if @course.update_attributes(params[:course])

flash[:notice] = 'Course was successfully updated.'

format.html { render :action => "show_course"}

else

flash[:notice] = 'Course was not updated.'

format.html { render :action => "edit_course" }

end

end

Once the course has been found, the user can change (update) any of the fields (attributes). If successful, it displays the course, if not it brings the user right back to the edit_course screen.

Delete

The last operation is to remove a course from the database. This is quite straightforward. The only difference is that the course should first be displayed giving the user a chance to decide whether or not to delete it.

def delete_course

@params = params[:course]

@course = Course.find_by_number(@params[:number])

if @course != nil

respond_to do |format|

format.html

end

else

flash[:notice] = 'The course was not found.'

end

end
If the course is found, it is displayed by delete_course.html.erb.

<h2>Delete Course</h2>

<%= form_for :course, :url => {:action => :remove_course} do |f| %>

<p>

Number:

<%= f.text_field :number %>

</p>

<p>

Name:

<%= f.text_field :name %>

</p>

<p>

Credits:

<%= f.text_field :credits %>

</p>

<p>

<%= f.submit "Delete Course? Yes, remove the course." %>

</p>

<% end %>

<h3><%= link_to 'No, do not remove.', schedule_index_path %></h3>

If the user clicks on the submit button, the following controller method will be used to remove it from the database.
def remove_course

@params = params[:course]

@course = Course.find_by_number(@params[:number])

@course.destroy

end

This removes the course from the database and returns the following message to the user.
<h2>The course was removed.</h2>

<h3><%= link_to 'Back', schedule_index_path %></h3>

All the views and methods require routes in routes.rb. If any parameters are involved, the routes must be posts. If these are not added by the rails generate command, you can edit the routes.rb file and add them yourself.

With these three methods you can manage the database. In a store application, they would be on screens for the managers and not available to customers. But for databases used for record collections or favorite sports teams, they would all be together on a main screen.

