Views

The view files are written in extended Ruby, ERB. These files combine html with ruby code. The code is enclosed in angle brackets with percent signs (<% … %>). This comes from ASP, active server pages, and JSP, Java server pages. ERB can be tricky to program, since the underlying ruby code must make sense to the interpreter. That means lining up the <% end %> tags and making sure that the actual html tags are outside the ERB ones. Note that some of the tags start with an equals sign as well as the rest (<%=…%>). This is done so that the code will be translated as given and not be subject to a sequel injection attack.
How Forms are Used in Rails
Html forms are used by a client to send data to the server. Once at the server, the data is processed and a response page is returned to the client. The basic form is straightforward.

<form method = "post" action="http://localhost:3000/store ">

<p><input type = "text" name = "size" value = "" size = 10 />Size </p>

<p><input type = "text" name = "color" value = "" size = 20 />Color</p>

<p><input type = "submit" value = "Send" /></p>

</form>

The method is used to tell the browser how to send the data. If the method is a get (doGet), then the parameters (here size and color) are coded into the URL string that is sent to the server.

GET /localhost:3000/store?size=8&color=blue HTTP 1.1
Rails does not allow get’s with forms. The method is always post (doPost), which sends parameters as part of the packets and not in the URL string. Because of this, the method is not specified in such forms. But it often must be added or changed in the routes.rb file. This is found in the config folder.
The action tells the server which method to use to satisfy the request. In Java, these are servlets. In Rails, they are methods in the controller. In the example above, the action refers to the localhost at port 3000. The method is called store. Localhost is called the ‘local loop’. It is just used for development. An actual server would be necessary for deployment.

Our example has two different ‘input types’. The first provides a text field where the user can type in data, here size and color. The second is used to display a ‘submit’ button that when clicked sends the data to the server. The ‘value’ attribute determines what will be displayed in the text field (here nothing) or on the button.

Rails provides a template for forms. You can see an example of this in the testapp/app/views/courses. The file, _form.html.erb, contains the form created by the scaffold command. The first section is devoted to error messages. The main section provides labeled text fields for the data: number, name and credits. This is followed by the submit button.
The ERB form for the store above might look like the following:

<h3><% form_for :item, :url => {:action => :find_item} do |form| %>

<p>

<label for="size "> Size:</label>

<%= form.text_field : size, :size => 10 %>

</p>

<p>

<label for="color "> Color:</label>

<%= form.text_field : color, :size => 20 %>

</p>

<p><%= submit_tag "Send" %></p></h3>

<% end %>

The actual html would look as follows:
<h3><form accept-charset="UTF-8" action="/store/find_item" method="post">
<div style="margin:0;padding:0;display:inline"><input name="utf8" type="hidden" value="✓" /> <input name="authenticity_token" type="hidden" value="FDuUCyP4UxnTpRTjrRLX0cZav01MTJIe6n73ES0CrfQ=" /></div>

<p>

<label for="size">Size:</label>

<input id="size" name="item[size]" size="10" type="text" />

</p>

<p>

<label for="color">Color:</label>

<input id="color" name="item[color]" size="20" type="text" />

</p>

<p><input name="commit" type="submit" value="Send" /></p>

</form> </h3>

Layouts
A web page consists of more than just the forms. It has a head part and foot. The head part contains style information given by style sheets and JavaScript. These are automatically added by Rails using a common layout. This is found in the views/layouts folder. The standard one created by the scaffold command follows:
<!DOCTYPE html>

<html>

<head>

<title>Testapp</title>

<%= stylesheet_link_tag :all %>

<%= javascript_include_tag :defaults %>

<%= csrf_meta_tag %>

</head>

<body>

<%= yield %>

</body>

</html>

The DOCTYPE declaration is found at the beginning of every html page. In some cases it is expanded to include more information:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

This says that the html used is transitional and refers to the standards set by the w3c (world wide web consortium) organization.

The <%= stylesheet_link_tag :all %> tells Rails to include all style sheets in the public/stylesheets folder. These have the .css extension. The <%= javascript_include_tag :defaults %> tag is used to include all JavaScript files in the public/javascript folder, and there six standard ones provided. Finally the

<%= csrf_meta_tag %> is used to prevent cross-site request forgery. This is a security fix found in Rails versions 3 and later.

The <%= yield %> tag between the two <body> tags is interesting. It is used to transfer control to the html in the view file. This means that all the standard code will be included each time without the developer having to copy it in each time. This was quite a bother when using Java servlets. It is followed by the usual closing tags.

The layout file comes with every Rails application and doesn’t require editing.

Cascading Style Sheets

The scaffold command provides a style sheet, stored in the public/stylesheets folder. You can add another stylesheet there, such as course.css. Because of the all, in <%= stylesheet_link_tag :all %> it will be added along with the previous one. Make sure that it is saved as a .css file and not .txt.
One such stylesheet follows.

/* Styles for schedule/index */

table{

border: 1;

border-style: solid;

border-width: thin;

cellpadding: 10;

}

td {

border-style: solid;

border-width: thin;

padding-right: 0.5cm;

}

This style sheet provides borders for the table that lists all the courses. Most web sites would have a considerably more elaborate one.

