A Shopping Cart for the Store
Unlike in a library where borrowers must register before they can take out a book, customers at on-line stores usually accumulate items in a shopping cart before they move on to check-out. This means that the store does not know who they are. Since hypertext transfer protocol (http) is ‘stateless’, it does not remember the source of a request after it has sent a response.
To get around this, web applications use something called a ‘session’. The session allows for a small amount of information to be stored on the customer’s computer in a ‘cookie’. It is unwise to store very much data in the session, and there isn’t much room for data anyway. So all we will store is the customer’s id.
Just like with the library application, we will need an additional table to ‘join’ the customer’s table and the product’s table. This will be used to store the customer’s id, the id of the product that is to be ordered and the quantity desired. We can call this table ‘cart_items’, since it will store the items in the shopping cart.
1. Create the customer:
rails generate scaffold customer name:string email:string address:text phone:string
We won’t use the name, email, address and phone in this lab, but this makes them available for subsequent work.
2. Create the cart items table:
rails generate scaffold cart_item customer_id:integer product_id:integer

 quantity_ordered:integer
3. As usual after generating models, we must run rake db:migrate.
4. The customer’s id is stored in the application controller (application_controller.rb) in order to be available to the entire application. It is used to identify this particular customer for all of his/her transactions. The code follows:

class ApplicationController < ActionController::Base
protect_from_forgery with: :exception
private

def customer

Customer.find(session[:customer_id])

 rescue ActiveRecord::RecordNotFound

Used if this is the first item added to the cart.

customer = Customer.create

session[:customer_id] = customer.id

customer

returns a value
 end
end
5. The cart items table holds the id’s of both the customer and the product ordered. In addition it stores the quantity ordered. So the cart_items table has both products and customer’s (id’s). Any product is likely to appear many times in the table with different customers. And each customer’s cart may have many items. The cart_items table is connected to both of the other tables by asserting that it ‘belongs_to’ them. This tells Rails just where to find the product and customer information. When the cart is emptied, all the items in the cart_items table for that customer should be removed. The second clause in customer.rb takes care of that. The code follows:
In models/customer.rb

has_many :cart_items, dependent: :destroy

In models/product.rb

default_scope order: 'name'

has_many :cart_items

In models/cart_item.rb

belongs_to :product

belongs_to :customer
Note the absence of plurals in the ‘belongs_to’ statements.
6. In models/customer.rb, add the following code that will be used to add a product to the shopping cart. The second method will be used to add up all the items in the cart.
class Customer < ActiveRecord::Base

has_many :cart_items, dependent: :destroy

def add_product(id, product_id, quantity_ordered)

cart_item =CartItem.new(
customer_id: id,

product_id: product_id,
quantity_ordered: quantity_ordered)
cart_items << cart_item

#appends a value

cart_item

#returns a value

 end

def total_price

cart_items.to_a.sum { |item| item.sub_total }

end

end

7. The following code goes in models/cart_item.rb. It is used to find the cost for a single transaction. We can also add validations for the quantity ordered.

class CartItem < ActiveRecord::Base
belongs_to :product

belongs_to :customer

validates :quantity_ordered, presence: true

validates :quantity_ordered, numericality: {greater_than_or_equal_to: 1}

def sub_total

product.price * quantity_ordered

end

end

8. We now need to add some methods and views to the home page. Do this with

rails generate controller home_page show_cart add_to_cart –s

The ‘-s’ stands for ‘skip’. It won’t change anything already in the home_page controller. New views will be created but not methods. You can add them yourself. Make sure to change the ‘gets’ in the routes table to ‘posts’.
9. Add the following to views/home_page/find.html.erb and to views/home_page/show.html.erb. As in lab 7, the id is of no use to customers, and it sent in a hidden field. It is needed in order to identify the specific product to be added to the cart.
<h2>Add to Cart</h2>

 <h3><%= form_for :product, url: {action: :add_to_cart} do |form| %>

<p><label_for="quantity">Quantity Ordered:</label>

<%= form.text_field :quantity_ordered, size: 10, value: '' %></p>

<%= form.hidden_field :id %>

<p><%= submit_tag "Add to Cart" %></p></h3>

 <% end %>

 <p><%= link_to 'Back', home_page_index_path %></p>
10. The add_to_cart method in the home page controller is as follows. Note that when the product is added, ‘customer.id’ and ‘product.id’ use periods and not underscores.
def add_to_cart
@customer = customer
@params = params[:product]

quantity_ordered = @params[:quantity_ordered]

product = Product.find_by_id(@params[:id])

@cart_item = @customer.add_product(customer.id, product.id, quantity_ordered)

respond_to do |format|

if @cart_item.save

format.html {render action: "show_cart"}
 else

format.html { render action: "index" }

 end

end

 end

11. To see the shopping cart after a product has been added, put the following code in views/home_page/show_cart.html.erb. The for loop lists all the items so far added to the cart. The following part shows the current total cost. The link to delete the cart uses the destroy method in the customers controller. Because of the ‘belongs_to’ statements, Rails can find the product and total price.
<h3>Shopping Cart</h3>

<p id="notice"><%= notice %></p>

<table align="center">

<% for item in @customer.cart_items %>

<tr>

<td><%= item.product.name %></td>

<td><%= item.quantity_ordered %> ×</td>

<td><%= number_to_currency(item.product.price) %></td>

<td ><%= number_to_currency(item.sub_total) %></td>

</tr>

<% end %>

<tr class="total_line">

<td colspan="3">Total</td>

<td class-"total cell"><%= number_to_currency(@customer.total_price) %></td>

</tr>

</table>

<p>

<%= button_to "Empty Cart", @customer,
method: :delete, data: { confirm: 'Are you sure?' } %>

</p>

<p>

<%= link_to 'Back', home_page_index_path %>

</p>
12. In the customers _controller, change the redirect in the destroy method to

format.html { redirect_to home_page_index_url }
13. We can also put a button on the home page (views/home_page/index.html.erb) allowing customers to view their shopping carts from there.
[image: image1.emf]products customers_carts

cart_items

id

name

price

id

product_id

customers_cart_id

<h3><%= button_to "Show Shopping Cart", action: :show_cart %></h3>

14. Finally add a method to the home_page controller for show_cart.
def show_cart

if customer != nil

@customer = customer
respond_to do |format|

format.html

show_cart.html.erb

end

else

format.html { render action: "index" }
end

end

15. Test this out on the web page by activating the server. There are now a number of additions and changes, which you can make. In a real application it would be helpful if customers could edit their carts either by removing an item or changing the quantity they are ordering.
16. If you do not want to show an empty table when there is nothing in the shopping cart, modify the following files:

a. In the application controller, add the global boolean variable (above the ‘private’ section)

@@items_in_cart = 0

b. In the home_page controller, change this variable to 1 when a product is added to the cart. This is in the add_to_cart method.

c. Also in the home_page controller, change the first line of the show_cart method to

if customer != nil and @@items_in_cart == 1

d. In the ‘destroy’ method in the customers controller, add a line to return the variable to 0.
 def destroy

@customer.destroy

@@items_in_cart = 0

[image: image4.png]Store - Mozilla Fir =D |

Eile Edit View History Bookmarks Tools Help
" store +

Google

€ P @ ocathost3 e

5 ot @ gt

Fruit Store
List all products
List Products
Find a product

Name:
Show Shopping Cart
Show Shopping Cart

an

[image: image2.png]@ Store - Mozilla Firefox (o= o |

File Edit View History Bookmarks Tools

" store

€ @ oan s v ¢

) Most Visted @ Getting Stated

U Shopping Cart

- Google |

Item was successfully created.

Help

Ll

Back

Apples |1 x_Js2.15 |s2.15
[Bananas]2 x_|s125 |s2.50
Grapes |3 x_|s2.00 |[36.00
oranges |4 x_|[s1.10 |[s4.40
Total $15.05

Empty Cart

[image: image3.png]@ Store - Mozilla M_QQM

Eile Edit View History Bookmarks Tools Help -

" store

€ @ locall

Most Visted @ Getting Saried

Fruit Store

Image:
Name: Oranges
Quantity: 60
Price: $1.10
Add to Cart

Quantity Ordered: 4

Back

