Checking Out and Sending Email

For a customer to check out, the web site must go into secure mode in order to protect credit card information. This is beyond the scope of this course. Instead we will organize the information and send out a confirmation email. We already have all the product information in the shopping cart. We only have to get the customer’s information.

An email mailer is built into Rails. Once you generate the mailer, you have only to create a form with the header information and another with the body of the message. All this information is either stored with the customer or available with the shopping cart.
1. First add some views to the home_page for checking out:

rails generate controller home_page check_out order –s
Don’t forget to change the ‘get’s to ‘post’s.
2. It can be helpful to provide an order number for the customer. It will need to be updated with each new customer. The best place to initialize it is in the application controller, since that is available to all the classes. It also has to be a global variable with two ‘@’ signs.

@@order_number = 0

Put this at the top of the application controller.

3. In order to send email, you have to have an account with a provider. The following will be for accounts on gmail. If you don’t already have one there, this might be a good time to set one up.
Open config/environments/development.rb. Change the line relating to delivery errors from false to true:

config.action_mailer.raise_delivery_errors = true

This will make the mailer errors visible to you while creating your application.
4. Then at the bottom of the class (before the end) add the configuration for your email. (This one is set up for gmail. You should be able to find the setup for other providers by checking around on the Internet.)

config.action_mailer.delivery_method = :smtp

config.action_mailer.smtp_settings =
{

:address

=> "smtp.gmail.com",

:port

=> 587,

:domain

=> 'localhost',

:user_name

=> 'your_gmail_name',

:password

=> 'your_gmail_password',

:authentication

=> 'plain',

:enable_starttls_auto
=> true
}
5. Now that the host has been setup, you can generate a mailer for your application.

rails generate mailer customer_mailer.
This creates a file in the mailer folder called customer_mailer and also a subfolder in the views folder called customer_mailer.

6. Open the file in the mailers folder and fill in the code for your email.

class CustomerMailer < ActionMailer::Base

 default from: "your_email_address"

def confirmation_email(customer, number)

@customer = customer

@order_number = number

mail(to: @customer.email, subject: "Order Received - Thank you.")

 end

end

7. Now when a customer checks out, we can send a confirmation email. Next place a button on the home page for checking out. You can also put one on the cart’s page.

<h3><%= button_to "Check Out", action: :check_out %></h3>

8. The check out method in the home_page controller will take the customer to the edit method in the customer controller.

def check_out

@customer = customer

id = @customer.id

respond_to do |format|

format.html{redirect_to edit_customer_url(id)}

end

end

9. The edit method in customers_controller only displays edit.html.erb in the views/customers folder. This in turn, uses _form.html.erb. You can change the submit button by adding to it:
 <%= f.submit 'Continue Check Out' %>

10. You can also change the edit file (in views/customers) to read:

<h1>Enter Data and Check Out</h1>

<%= render 'form' %>

<%= link_to 'Back', home_page_index_path %>

11. To enter the data into the customer’s table, we have to change the code for the update method in customers_controller. This will deliver the email confirmation.
def update

@@order_number += 1

respond_to do |format|

if @customer.update(customer_params)

CustomerMailer.confirmation_email(@customer, @@order_number).deliver

format.html

else

format.html{render action: :index}

end

end

 end
12. The method above works in Rails version 4. If you are using Rails version 3, use the following code instead.

def update

@@order_number =+ 1

@customer = Customer.find(params[:id])

respond_to do |format|

if @customer.update_attributes(params[:customer])

CustomerMailer.confirmation_email(@customer, @@order_number).deliver

format.html

else

format.html{render action: :index}

end

end

end

13. If the update is successful, an update method in views/customers will be sent back to the customer. Since there isn’t such a file, copy some other file into views/customers and rename it update.html.erb. Then replace the data in it by the following:
<h3>Your Order</h3>

<p id="notice"><%= notice %></p>

<h3>Thank you for your order.

A confirmation has been sent to <%= @customer.email %>.

Name: <%= @customer.name %>.

Email Address: <%= @customer.email %>.

Mailing Address: <%= @customer.address %>.

Contact Telephone Number: <%= @customer.phone %>.

</h3>
14. The email to be sent to the customer can be almost the same. Copy update.html.erb into the customer_mailer folder and rename it confirmation_email.html.erb. Remove the line that mentions the confirmation email and add the order number.
<!DOCTYPE html>

<html>

<head>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />

</head>

<body>

<h3>Dear <%= @customer.name %>,

Your order has been received. Thank you.

Order number: <%= @order_number %>.

Name: <%= @customer.name %>.

Email Address: <%= @customer.email %>.

Mailing Address: <%= @customer.address %>.

Contact Telephone Number: <%= @customer.phone %>.

</h3>

</body>
</html>

15. Gmail has instituted more secure mail. If you receive an email from an unsecured account, it posts a message asking if you want to accept such messages. Temporarily disable their security to test your application. When you are sure that it works, re-enable Gmail security. To disable security, go to the blue circle and choose Account and then Security. Under Security select Account permissions and then Access for less secure apps. Under Settings, Enable the lower security. When you have tested the store, return to the same screen and Disable the permissions.
16. Now, test this out in your browser and see if you can send yourself an email. Also check that the customer’s data was entered correctly. You can see the table at localhost:3000/customers.
17. If all this worked, add more order information to the confirmation_email. You can add the contents of the shopping cart using the code in show_cart. The variable, @customer, makes this all available to the view. You can also add a link back to the home page on the update view. You might call it Continue Shopping.
<%= link_to 'Continue Shopping', home_page_index_path %>
[image: image1.png]| Firefox ~ |

| €)9 | @ localhost:3000/customer c¢/[B-cg- P, B & A

Enter Data and Check Out

Name.
Alice Lee.

Email
alee@aol.com

163 William St
Room 237
New York, NY 10038

[image: image2.png]€ | @ localhost 3000/ customers/ 14
Check Out

Thank you for your order.
A confirmation has been sent to alee@aol.com.

Name: Alice Lee.
Email Address: alee@aol.com.

ing Address: 163 William St Room 237 New York,
NY 10038.

Contact Telephone Number: 212-346-0799.

Your Order:

5% [$2.15 |$10.75
$1.25 | $3.75
$14.50

Apples
[oranges

ax

Total

To empty cartand start over click here:

Dear Alice Lee,
Your order has been received. Thank you.
Order number: 5.
Name: Alice Lee.
Email Address: alee@aol.com.
Mailing Address: 163 William St. Room 237 New York, NY 10038.
Contact Telephone Number: 212-346-0799.
8Your Order:

	Name
	Quantity Ordered
	Price
	Total

	Apples
	5
	$2.15
	$10.75

	Oranges
	3
	$1.25
	$3.75

	Total
	$14.50

