Validation and Testing
Rails makes it easy for us to make sure that only correct data gets stored in the database. Validation statements can be placed in the files in the models folder for each table in the database. These can be used to assure that no text field is empty, that numerical entries are valid and that one attribute (column) is unique. This attribute can then be used as an alternate primary key.

Rails also has built in testing for applications. This means that you can test your work after making each addition. The tests use a separate database from the development database, and Rails provides test methods that you can use and modify. This makes ‘test driven development’ (TDD) particularly easy.
1. Add the following lines one at a time to the file product.rb, which can be found in the store/app/models folder.

class Product < ActiveRecord::Base

validates :name, :quantity_in_stock, :price, presence: true

validates :quantity_in_stock, numericality: {greater_than_or_equal_to: 1}

validates :price, numericality: {greater_than_or_equal_to: 0.01}

validates :name, uniqueness: true

 end

2. After adding a line, test out what it does using the server. The first line should prevent empty boxes, the second line will ensure that the quantity is positive, the third line will prevent the price from being zero or negative, and the last line prevents two products from having the same name.
3. Before doing the rest of the lab, close the server by typing <ctrl> C.
4. Rails has built in support for testing applications, including the validation code added above. Look at the folder called test and see what is in it. There are six subfolders, three of which we are concerned with here: fixtures, controllers and models.

5. First type rake test and see the results. You should have failures for two functional tests. The ‘F’ in the results stands for ‘Failure’. (An ‘E’ would stand for ‘Error’.)

6. We can fix the second failure by opening products.yml in the fixtures folder. Fixture files are loaded into the test database during tests. Notice that both product one and product two have the same name. The validation line above requires each to be unique. So change one of them and rerun the test (rake test). This should fix the first failure.
7. The first failure is more difficult. It arises in the product controller in test/controllers. Open the file, product_controller_test.rb. The trouble is in the method, test "should create product" do. This doesn’t look like a method, but it translates to one when run. The trouble here is that the controller is not increasing the product count, again because of the validation requiring unique names. You can fix this by changing the method to:
test "should create product" do
assert_difference('Product.count', +1) do
post :create, product: {name: 'Peaches', price: 1.25, quantity_in_stock: 10}
end
assert_redirected_to product_path(assigns(:product))
end

(The +1 is not necessary, since +1 is the default.) This creates a new product with a new name. Now when you run rake test, there should be no failures.
8. We can also test the other validations. In the test/models folder, open product_test.rb. To begin with the class only contains comments. Add to the class the following:

test "product price must be positive" do
product = Product.new(name: "Melons", quantity_in_stock: 5)
product.price = -1
assert product.invalid?
assert_equal "must be greater than or equal to 0.01", product.errors[:price].join('; ')
product.price = 0
assert product.invalid?
assert_equal "must be greater than or equal to 0.01", product.errors[:price].join('; ')
product.price = 1
assert product.valid?
end
This method first creates a new product and then asserts that both -1 and 0 are invalid prices while +1 is valid. Run rake test again and see this pass. The assert_equal command says that the error associated with the validation is the same as the statement in quotes; "must be greater than or equal to 0.01" is the same as greater_than_or_equal_to: 0.01.
9. Next adapt the method above to test the validity of the quantity_in_stock to ensure that it is greater than or equal to 1.
10. Finally add validation code to your playlist and then run tests on it as well, like those above.
