Controller, Views, Forms and Routes
1. In the Sites folder type rails new pizzeria. (In Aptana, close the current project and create a new one called pizzeria.)
2. Change to the pizzeria folder: cd pizzeria.
3. Type rails generate controller pizza index order to create a controller and two views files.
4. In routes.rb change the second ‘get’ to a ‘post’ so that it reads post "pizza/order".
5. Open the file, pizza_controller.rb. It is found in the apps/controllers folder. In the index method, place the code @time = Time.now.to_s. This accesses the built in class, Time, and its method, now. The code to_s changes the result to a string. The variable, @time, is a class instance variable and can be accessed not only inside the controller but also on the index view page.

6. The file index.html.erb is found in the app/views/pizza folder. The extension, erb, stands for extended Ruby. It contains a combination of html code and Ruby code. The Ruby code is enclosed by angle brackets combined with percent signs:
<% … %> or <%= … %>.
The first pair is used for control structures, such as ‘for loops’. The second is used for expressions. Now enter the code <h3>The time is now <%= @time %>.</h3> onto the index.html.erb page. You can also replace the code that Rails supplied with <h1>Pizzeria</h1>. We will add options for a pizza order in a later lab.

7. Check this out in your browser by first opening the server (rails server) and then going to localhost:3000/pizza/index. You should see the time currently stored on your computer. If you want to update the time, you will have to refresh the page.
8. Next in app/views/pizza/index.html.erb add the following to the time code entered before. This creates a form for the pizzeria and displays text boxes for the user to enter data. It will send the two parameters, name and email, in a hash called pizza to the controller when the submit button is clicked.
<h3><%= form_for :pizza, url: {action: :order} do |form| %>

<p>

<label >Name:</label>

<%= form.text_field :name, size: 20 %>

</p>

<p>

<label >Email Address:</label>

<%= form.text_field :email, size: 20 %>

</p>
<p><%= submit_tag "Send" %></p>

<% end %>

</h3>
9. When this is sent to the controller, the order method will receive the parameters from the web page (view) and send back a response, in this case just an echo of the data. The response will be on the page, order.html.erb, also found in app/views/pizza.
class PizzaController < ApplicationController

def index

@time = Time.now.to_s
end

def order

@params = params[:pizza]

@name = @params[:name]

@email = @params[:email]
respond_to do |format|

format.html

end

end

end

10. Now change the code in order.html.erb to that below. This just sends back the data entered by the user. The variables, @name and @email, in the controller are accessible by the pages in views.
<h1>Pizzeria</h1>

<h3>Name: <%= @name %><h3 />
<h3>Email Address: <%= @email %>.</h3>
11. Refresh your browser to view the new code on the index page. Enter your name and email address into the text boxes and click ‘send’ to see the results on the order page.
12. If you want, you can also add an image to your index page with the tag

<%= image_tag("pizza.jpg") %>
Find a picture of a pizza and place the file in the folder app/assets/images. You may want to reduce the picture in size so that it looks better on the page. This can be done with the Windows Paint app.
13. Change the welcome route in routes.rb to the following code. With this you can access the application in your browser with localhost:3000.

You can have the root of your site routed with "root"

root ‘pizza#index’
14. Return to the playlist and change the root there similarly to the way you just did for the pizzeria. You can also add an image to the index page.
[image: image1.png]Eile Edit View History Bookmarks Tools Help

(€)@ ocaost3 e

Most Visted @ Getting Sarted

Pizzeria

‘The time is now 2013-08-05 12:17:03 -0600.

Name Alice Lee

Email alee@aolcom

 [image: image3.png]Bie G e by gookman Tuce top |
i

mser & A

Pizzeria

‘The time is now 2013-08-09 10:39:13 -0600.

Name Alice Lee

Email[alee]

[R ———

15. HTML5 provides developers with several new form fields. One is for email. Change the line in the index field concerning email to email_field.
[image: image2.png](€ @ locathost2000/pi 77+ € |

Most Visited @) Getting Started

Pizza Order

Name: Alice Lee.

Email Address:alee@aol.com.

<p>

<label >Email Address:</label>

<%= form.email_field :email, size: 20 %>

</p>
You should now get a warning when you enter an invalid email address.
Ajax (Extra)
Ajax (Asynchronous JavaScript and XML) is used to refresh a part of a web page without reloading all the rest. The code below is a little out of date, but it still works. We can change the time on the index page without reloading all the other features of the page.

1. Add the code below to your index page. The condition, remote: true, is used to tell the controller to use Ajax and not reload images, JavaScript and stylesheets.

<div id="time_div">

<%= link_to "Click here ",

url : { action: :update_time ,

remote: true}

 %>

to update the time.

 </div>
2. Then add a new method to the controller:

def update_time

render(:update) do |page|

page[time_div].replace_html @time

end

end

3. Now when you click on the update link, it will update the time without reloading the rest of the page.

