Lab 9 – Library: Books and Borrowers
Database tables are often related to each other. A library with books and borrowers is a good example. After a borrower has registered at a library, he or she may take books out, read them and then bring them back. The librarians need to know who has books out and when they are due back. This information can be held in a separate table that keeps track of the books’ and borrowers’ ids.

Rails makes it easy to keep track of the relationships between the three tables. This is done by adding statements to the models. The books and borrowers tables contain fields called ‘primary keys’. They are automatically generated by Rails. The table that joins them, which we will call ‘books_on_loan’ holds these keys. In this table they are ‘foreign keys’. These keys ‘belong to’ the books and borrowers tables. We add ‘has_many’ to the books and borrowers tables and ‘belongs_to’ to the books_on_loan table. With this information, Rails can find all the data needed to create a list of the books that have been loaned out.
1. To begin, create a new application called library: rails new library, cd library, rake db:create.
2. Next use the scaffold command to create tables for borrowers and books. The book table should have columns for the author, title and isbn as well as a ‘boolean’ column to indicate whether it is on loan. Normally the library would keep much more information about each book. The same is true of borrowers. The database would have the borrower’s address and phone number.
I. rails generate scaffold borrower name:string email:string
II. rails generate scaffold book author:string title:string isbn:string onloan:integer
3. Create the tables with rake db:migrate and then open the server and add data to both tables.
a. rails server

b. localhost:3000/borrowers

i. Add data

c. localhost:3000/books

i. Add data. Set onloan to 0

d. Use <ctrl>Pause or <ctrl> C to exit the server.
4. The books table is related to the borrowers table. This is expressed by adding has_many to books.rb. The file is found in models/book. This tells Rails that the book can be held by many borrowers. Similarly, a borrower is related to the book that she or he has on loan. Since the borrower could borrow several books at a time, this is also expressed by has_many. This is put in models/borrower/borrower.rb.
a. In book.rb add has_many :borrowers

b. In borrower.rb add has_ many :books

5. We now need a table to ‘join’ the preceding tables. It will be filled when books are checked out and depleted when they are returned. A full application would also keep track of the due date.

a. rails generate scaffold books_on_loan book_id:integer borrower_id:integer

b. Again create the table by typing rake db:migrate.

c. In models/books_on_loan.rb add belongs_to :book and belongs_to :borrower. Note that here book and borrower are singular. Make sure that you don’t have a final ‘s’.

6. Next create a controller for the librarian. The librarian has to check out books to a borrower and check them back in when they are returned. We will also generate a list of all the books that are out. Don’t forget to change all the ‘gets’ to ‘posts’ in config/routes except for the one for the index.

a. rails generate controller librarian index check_out check_in list_onloan

7. To check out a book, we have to know who the borrower is and which book is to be borrowed. This information can be sent in a form from the librarian’s index page.
a. In views/librarian, open index.html.erb and add
<h2>Check Out</h2>

 <h3><%= form_for :book, url: {action: :check_out} do |form| %>

<p>Title: <%= form.text_field :title, size: 20 %></p>

<p>Borrower: <%= form.text_field :name, size: 20 %></p>

<p><%= form.submit "Check Out" %></p>

<% end %>
 </h3>
8. In the librarian controller, we now have to fill in the code for the check_out method. The following will do:

def check_out

@params = params[:book]

title = @params[:title]

name = @params[:name]

@book = Book.find_by_title(title)

@borrower = Borrower.find_by_name(name)

if @borrower == nil

@note = 'This borrower is not registered.'

elsif @book == nil

@note = 'This book is not in the library.'

elsif @book.onloan == 1

@note = 'This book is on loan.'

else

@book.onloan = 1

@book.save

@books_loaned = BooksOnLoan.create(book_id: @book.id, borrower_id: @borrower.id)

@books_loaned.save

@note = 'The book was checked out.'

end

respond_to do |format|

format.html

end

 end

9. The file, views/librarian/check_out.html.erb doesn’t need very much content. It will be filled by one of the notes in the controller.

<h1>Librarian Check_out</h1>
<h3><%= @note %></h3>

<%= link_to 'Back', librarian_index_path %>
10. Checking in a book only requires the book’s title. Add this code to the librarian index page.
<h2>Check In</h2>

 <h3><%= form_for :book, url: {action: :check_in} do |form| %>

 <p>Title: <%= form.text_field :title, size: 20 %></p>

 <p><%= form.submit "Check In" %></p>

 <% end %>

 </h3>
11. The code for the controller is very straightforward. This also goes in the librarian’s controller.
def check_in

@params = params[:book]

title = @params[:title]

@book = Book.find_by_title(title)

if @book != nil

@book.onloan = 0

@book.save

@books_loaned = BooksOnLoan.find_by_book_id(@book.id)

if @books_loaned != nil

@books_loaned.destroy

@note = 'The book was checked in.'

else

@note = 'Error in books_loaned destroy'

end

else

@note = 'Book not found'

end

respond_to do |format|

format.html

end

 end

12. The file, views/librarian/check_in.html.erb, is also very short.

<h1>Librarian Check In</h1>

 <h3><%= @note %></h3>

<%= link_to 'Back', librarian_index_path %>

13. The librarian should also be able to generate a list of all the books that are on loan. This list will contain the title, author, isbn and the borrower’s name and email address. We can use a button to create this list, since there are no parameters. This should also be added to the librarian’s index page.
<h2>List Books On Loan</h2>

<h3><%= button_to "List Books On Loan", action: :list_onloan %></h3>

14. The controller code is very simple. If there are no books on loan, it displays a note, otherwise it lets the view do all the work of iterating through the file, @books_loaned.
def list_onloan

@books_loaned = BooksOnLoan.all
if @books_loaned == nil

@note = 'No books are on loan.'

else

respond_to do |format|

format.html

end

end

end
15. The code for views/librarian/list_onloan.html.erb is similar to that for the book index. The statements that we put in the models are used by Rails to find the books and borrowers. Be very careful to use plurals for book.rb and borrower.rb and singular nouns for books_on_loan.rb. That is, make sure that in book.rb you have ‘has_many :borrowers’, while in books_on_loan.rb you have ‘belongs_to :book’ and ‘belongs_to :borrower’. It won’t work if you have the wrong number.
<h1>Librarian List Books On Loan</h1>

<table>

<tr>

<th>Author</th>

<th>Title</th>

<th>ISBN</th>

<th>Borrower Name</th>

<th>Borrower Email</th>

</tr>

<% for item in @books_loaned %>

<tr>

<td><%= item.book.author %></td>

<td><%= item.book.title %></td>

<td><%= item.book.isbn %></td>

<td><%= item.borrower.name %></td>

<td><%= item.borrower.email %></td>

</tr>

<% end %>

</table>

<%= link_to 'Back', librarian_index_path %>

16. Run this using the data you stored in the books and borrowers tables. You should be able to check out books, check them in and then list all the books on loan.
17. You can do something similar with the playlist application. Create a table for artists and link it to the table for songs. Then create a controller to manage the songs’ and artists’ tables like the one for the librarian.
[image: image1.png]€) @ localhost 3000/ librarian/index

Most Visted @ Getting Sarted

Librarian

Llst Books On
Loan

ListBooks

Check Out

Alice Lee

[image: image2.png]¢ [B- oxg

Most Visted @ Getting Sarted

Librarian List Books On Loan

Author
[Eliot

Title

ISBN Borrower Name _Borrower Email

[Middiemarch

456 [jBetty Smith __|[bsmith@gmail.com

[Shakespeare

Hamlet

[ss67_]petty smith __[jbsmith@gmail.com

lausten

[Emma

1234 J[alice Lee

[alee@aol.com

Back

