HTML Forms, Javascript, and Cascading Style Sheets
HyperText Markup Language (HTML) is used to create web pages that can be viewed with a browser. With it a developer can add images, create lists, tables, and forms, add dynamic features with Javascript, VBScript, and Java applets, and enhance the appearance of pages with Cascading Style Sheets (CSS).

This document will serve as a brief introduction to some of the material. There are many books
 and web sites
 that show designers how to incorporate these features and more. They should be consulted for further details.

HTML Forms

Forms on a web site are used to gather information from the client. There are several different kinds. The simplest offer either a single box or a text area for a user to fill in. Sometimes, however, there are a limited number of choices to be provided to users, such as sizes or colors. These use list boxes, check boxes or radio buttons. Users may select several options at once from list boxes and check boxes, but radio buttons are used when only one selection is allowed.
A Form begins with the <form> start-tag and closes with the </form> end-tag. All forms contain method and action attributes. Method attributes are used to inform the server whether the method to be executed is a get (doGet) or a post (doPost). Action attributes tell the server where to find the servlet or Java server page (JSP) that will service the request and provide a response.

Text Boxes
Text boxes and areas are used to gather information from a user such as names, addresses, credit card numbers, etc. A text box provides a single box that the user is expected to fill in. Text areas can be used for longer input like questions or comments.

The simple form below displays two input boxes along with a button used to submit the data to the server.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>E-Mail Form</title></head>

<body>

<h3>Enter your name and e-mail address.

Then click the Send button to send the data to the server.</h3>

<form method = "get" action="http://127.0.0.1/servlet/client_server.EmailServlet">

<p><input type = "text" name = "name" value = "" size = 30 /> Name </p>

<p><input type = "text" name = "email" value = "" size = 30 /> E-Mail Address </p>

<p><input type = "submit" value = "Send" /></p>

</form>

</body>

</html>

Here the head tags only supply a title that will be shown at the top of the browser when the page is loaded. The body of the document contains a message to the user to enter data and click on the send button. The form first supplies the method that the server will use to process the data and the action information that tells the server what program to use for the processing. The form displays two input text boxes and a submit button. The type information is used to tell the browser what kind of object to display. A text box displays a box where the user can type in data. Its initial value is the empty string. But after data is entered, the value of the box will be whatever was typed in. When the type is submit, the browser displays a button with a caption given by the value attribute.

[image: image8.emf]

Note that all tags either have a matching closing tag or are written with the ending “/>”. This document begins with a DOCTYPE declaration at the beginning. This one is Transitional. That means that it follows the XHTML (Extensible HTML) guidelines, but it may make some allowances for older browsers that do not support Cascading Style Sheets. Documents can also be Strict or Frameset. Strict documents use CSS to store all information used for the layout of the page. Frameset is used when the document contains html frames.

The action attribute, action=http://127.0.0.1/servlet/addresses.EmailServlet, is used to tell the server where to find the program that will service the request. This one says that the servlet, EmailServlet, is in a package called addresses. It is located in the root directory of the server and can be accessed using the local loop, 127.0.0.1. The code for it follows.
package addresses;

/**

 * EmailServlet processes a request from a web page. It responds to the

 * request by sending back a web page listing the name and email address.

**/

import java.sql.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;
public class EmailServlet extends HttpServlet

{

public void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

// Get a PrintWriter object and respond to the request.

PrintWriter out = response.getWriter ();

String name = request.getParameter ("name");

String email = request.getParameter ("email");

Page.createHeader (out, "Addresses");

out.println ("<h3>Hello.</h3>");

out.println ("<h3>" + name+ "</h3>");

out.println ("<h3>Your email address is " + email + "</h3>");

Page.createFooter (out);

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

 catch (IOException ex) {System.out.println ("IO Exception.");}

} // doGet

} // EmailServlet

// Class with static methods that add standard lines to the html output page.

class Page

{

public static void createHeader (PrintWriter out, String title)

{

out.println ("<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'>");

out.println ("<html>");

out.println ("<head>");

out.println ("<title>" + title + "</title>");

out.println ("</head>");

out.println ("<body>");

} // createHeader

public static void createFooter (PrintWriter out){out.println ("</body></html>");}

} // class Page
Text Areas
Text areas work very similarly. The form is somewhat different, but the servlet is much the same.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>Comment Form</title></head>

<body>

<h3> Please enter your comments below.</h3>

<form method = "get" action="http://localhost:8080/servlet/comments">

<p><textarea name = "comment" rows = "4" cols = "40" wrap = "physical"></textarea>

<p><input type= "submit" value="Send" /></p>

</form>

</body>

</html>
The line, <textarea name = "area" rows = "4" cols = "40" wrap = "physical"></textarea>, defines a text area called area with 4 rows and a width of 40 columns. The wrap attribute tells the browser to wrap the text. An example page is shown below.

[image: image1]
The servlet looks much the same as the one for the text box. It also uses the same Page class.
package echo;

/* CommentServlet processes a request from a web page. It responds to the request by echoing
 * back the comment that was sent in.
*/

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CommentServlet extends HttpServlet

{

protected void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

String comment = request.getParameter ("comment");

Page.createHeader (out, "Comment Page");

out.println ("<h3>Your comment follows</h3>");

out.println ("<h4>" + comment + "</h4>");

Page.createFooter (out);

}catch (IOException e) {System.out.println ("Servlet Exception");}

} // doGet
} // CommentServlet

[image: image2]
Radio Buttons
Radio buttons offer the user several things to choose from. The form uses an input statement as with text boxes, but the type now is radio.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>Color Form</title></head>

<body> <h3>Choose the color for your garment.</h3>

<form method = "get" action="http://127.0.0.1:8080/servlet/colors">

<input type="radio" name="colors" value="White"/> White

<input type="radio" name="colors" value="blue" /> Light Blue

<input type="radio" name="colors" value="orange" /> Tangerine

<input type="radio" name="colors" value="pink" /> Salmon

 <p><input type = "submit" value = "Send" /></p>

</form>

</body>
</html>
If the user chooses Light Blue, the URL string for this will be
http://127.0.0.1:8080/servlet/colors?colors=blue

[image: image3]
The doGet method for this is much the same as before.

protected void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

String color = request.getParameter ("colors");

Page.createHeader (out, "Color Page");

out.println ("<h3>The color you selected is " + color + ".</h3>");

Page.createFooter (out);

}catch (IOException e) {System.out.println ("Servlet Exception");}

} // doGet
Check Boxes

Check boxes are very similar to radio buttons. But they are individually named rather than all having the same name. You also may select more than one choice with a check box. The following is an example where that would be appropriate.

<body>

<h3>Indicate your menu selections.</h3>

<form method = "get" action="http://127.0.0.1/servlet/echo.CheckBoxServlet">

<input type="checkbox" name = "menu" value = " Hamburger" /> Hamburger

<input type = "checkbox" name = "menu" value = "French Fries" /> French Fries

<input type = "checkbox" name = "menu" value = "Soda" /> Soda

<input type = "checkbox" name= "menu" value = "Apple Pie" /> Apple Pie

<p><input type = "submit" value = "Send" /></p>

</form>

</body>

[image: image9.emf]

Since it is possible to make several selections at once, you cannot use getParameter (…) to get the value. Instead Java servlets use getParameterValues (…). The following is an example.

String [] choices = request.getParameterValues ("menu");

Note that getParameterValues (…) returns an array, not a single value. Since some of the choices may be empty, use an if statement to test for this.

for (int count = 0; count < choices.length; count ++)

{

if (choices [count] != null) out.println ("" + choices [count] + ", ");

}

This example only displays the results.

protected void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

// Get the choices, an array of Strings.

String [] choices = request.getParameterValues ("menu");

Page.createHeader (out, "Menu Choices");

out.println ("<h3>Hello.</h3>");

out.println ("<h3>Your choices are ");

// Print out the non-null values in the array.

for (int count = 0; count < choices.length; count ++)

{

if (choices [count] != null)

out.println ("" + choices [count] + ", ");

}

out.println ("</h3>");

Page.createFooter (out);

} catch (IOException e) {System.out.println ("Servlet Exception");}

} // doGet

List Boxes
List boxes are similar to check boxes. They have a list of options that the user may choose from.

<body> <h3>Indicate your menu selections.</h3>

<form method = "get" action="http://127.0.0.1/servlet/client_server.ListBoxProcessor">

<select name = "menu" size = "4" multiple = "multiple" >

<option /> Hamburger

<option /> Soda

<option /> French Fries

<option /> Apple Pie

</select>

<p><input type = "submit" value = "Send" /> </p>

</form> </body>

The size attribute determines how many items will be shown. If there are more options than the number given by size, a scroll bar is added. If you want to allow the selection of more than one item at a time, include the multiple attribute. (In order to select several items, users have to hold down the control key when making the selection.)

[image: image10.emf]

protected void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

// Get the choices, an array of Strings.

String [] choices = request.getParameterValues ("menu");

Page.createHeader (out, "Menu Choices");

out.println ("<h3>Your choices are ");

// Print out the non-null values in the array.

for (int count = 0; count < choices.length; count ++)

{

if (choices [count] != null)

out.println ("" + choices [count] + ", ");

}

out.println ("</h3>");

Page.createFooter (out);

} catch (IOException e) {System.out.println ("Servlet Exception");}

} // doGet

Javascript
Scripting languages such as Javascript and VBScript are used to add functionality to web pages. They can be either included in the web page itself or stored in a separate file. In the latter case, the web page must include a link to the file.

Scripts are downloaded with the web page, unlike Java applets and servlets. Applets are not downloaded until the browser reaches the <applet> tag. Servlets always execute on the server, not the user’s computer. But Javascript is downloaded immediately and is executed on the client’s computer, thus saving time that would otherwise be used for repeated connections to the server.

Javascript is not Java, but it shares some syntax with Java and C. It is not strongly typed, so variables do not have to be declared, although they may be. Also statements do not require a terminating semi-colon, but again these may be included. If two statements are on the same line, they must be separated by a semi-colon. Also like Java, Javascript is case sensitive.

Script That Says Hello
The following example simply writes the word "Hello" into the box when the user clicks the button. It does not send anything to the server, so the form includes neither an action nor a method attribute.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head>

<title>Javascript Hello Example</title>

<script language="Javascript">

<!-- sayHello writes the word "Hello" into the box when the button is clicked.

function sayHello ()

{

HelloForm.Hello.value = "Hello";

}

//--></script>

</head>

<body>

<form name = "HelloForm">

<input name="Hello" type="text" value="" size = 10>

<input type="button" value="Click" onClick = "sayHello ()">

</form>

</body>
</html>
Scripts may be placed either in the head or body of the page. It is somewhat more common to put them into the head, since it is downloaded first. Also this separates the script from the rest of the page. If the script is external, the head would be as follows:

<head>

<script language = "Javascript" src = "helloScript.js"> </script>

<title>Javascript Hello Example</title>

</head>

The script file, helloScript.js, would contain only the following code:

<!-- sayHello writes the word "Hello" into the box when the button is clicked.
function sayHello ()
{

HelloForm.Hello.value = "Hello";
}
//-->
Note that the script is placed inside a comment. This causes older browsers that do not support Javascript to skip the lines.

Javascript Functions
Functions in Javascript are very simple. They may either perform an action, such as the one above, or return a value. A useful example of the latter is found in the next example. It checks a login form to see that all the boxes have been filled in. This check is performed by the user’s browser rather than on the server. This saves a significant amount of time when the form contains a number of boxes.

This example shows an alert message and returns false, if the box is empty. The alert message is contained in a popup box as shown below. A false value prevents the action from taking place. However, if both boxes contain text, the value true is returned and the request is sent to the server.

<html>

<head>

<script language = "Javascript">

<!-- CheckForm displays an alert if a box has not been filled in.

function CheckForm ()

{

if (LogonForm.username.value == "")

{

alert ("Please enter your username");

return false;

}

if (LogonForm.password.value == "")

{

alert ("Please enter your password");

return false;

}

return true;

}

//-->

</script>

<title>Login Form</title>

</head>

<body>

<h2>Please Login</h2>

<form name = "LogonForm" method = "post" action = "http://localhost/servlet/user.Logon">

Username: <input type = "text" name = "username" />

Password: <input type = "password" name = "password" />

<input type = "submit" value = "Login" onClick = "return CheckForm ()"/>

<input type = "reset" value = "Reset" />

</form>

/body>

</html>

[image: image4]
Functions can also have parameters. These are not typed, but otherwise they are similar to those in Java methods. An example would be if there were two forms on the same page and the function had to distinguish between them. The function heading might look like

function CheckForm (formName)
and the submit tag

<input type = "submit" value = "LogonForm" onClick = "return CheckForm(LogonForm)" />.
Objects in Javascript

Javascript also has objects. The one in the next example is a Date object. Like in Java, it must be instantiated before it can be used. There are a number of accessor methods included with this object that get parts of the date, such as the year, month, day, hours, minutes and seconds. The values are those that are stored in the user’s computer. If the computer time is accurate, the results of the function will be also.

<script language="Javascript">

<!--Example that writes the current date on the page>

date = new Date ()

month = date.getMonth ()

month = month + 1

// Months in Javascript begin with January as 0.

day = date.getDate ()

year = date.getYear ()

document.write ("Month ", month)

document.write ("
Date ", day)

document.write ("
Year ", year)

hour = date.getHours ()

if (hour > 12) hour = hour – 12
// Afternoon hours are returned between 13 and 24.

minutes = date.getMinutes ()

seconds = date.getSeconds ()

document.write ("
Time ", hour, ":", minutes, ":", seconds)

//-->

</script>
The document mentioned in the script is the web page. This will write the date and time on the web page. As with any html page you have to use tags such as
 or <p> to indicate a line or paragraph break.

Numerical Data and Arrays
Text boxes contain text, i.e. strings, and not numbers. If the contents of a box are to represent numbers, they must first be parsed before they can be used in a calculation. As in Java, the method to use is parseInt. If the text box, weightBox, contains an integer, the following can be used to change the contents from a string to a number:

weight = parseInt (weightBox.value);

After a calculation, the answer may turn out to be a double with a number of decimal places. The following will round these to two decimal places:

mean = Math.round ((sum / count)* 100) / 100;
Occasionally a box may be empty or an answer may not exist. Then Javascript displays NAN. This stands for Not a Number. Checking a box for empty before using it is prudent.
Javascript has arrays, and like those in Java they begin with index 0. They are instantiated with new.

var arrayName = new Array ();
They do not have a fixed length, so the number of objects in the array can be found using

arrayName.length;

Arrays can also be filled initially using parentheses:

var prices = new Array (2.89, 1.50, 1.00, 4.95, 3.50);

The contents of an array are accessed the same as in Java using square brackets.

prices [0] = 3.75;

Creating New Windows

Javascript can also create a new window with a specified HTML document in it. This document can either be on your local disk or on the Internet. The following example creates a new window for a date-time page. The code is straightforward. You have to tell the browser where to find the HTML page and how large the window should be.

The following shows a sample script that opens a new window. The first attribute tells where to find the page to open. The second says that it should be opened in a window. The last two give the width and height of the new window (in pixels). Notice that the width and height are enclosed by a single set of double quotation marks since they combine to make up a single attribute.

<script language="Javascript">

<!--

timeWindow = window.open ("date-time.html", "Window", "width=200, height=100")

//--></script>

The new window created with this script appears below. It is a functioning window and can be used like any other HTML page.

[image: image5.png]ko (=7 |

Month 8
Date 18

Year 2004
Time 430:12

Cascading Style Sheets
Cascading Style Sheets (CSS) are used to add styles to web pages. Styles are such things as color, font type and size, margins, and cell spacing. There are two reasons to use style sheets. One is to separate style information from HTML markup and content. And the other is to keep consistent styles throughout a web site.

Style sheets are very simple. They consist of a list of HTML tags followed in curly braces by styles that are to be associated with them. For example, if a web page contains a table, a style sheet might have a listing for styles associated with the table.

table

{

border-style: solid;

border-width: thin;

margin-left: 1.0cm;

margin-top: 1.0cm;

}

A Sample CSS Document
/* Style sheet for an application, named project-styles.css. */

body

{

background-image: url("images/white.gif");

text-align: center;

color: blue;

}

h1, h2, h3, h3, h4, h5, h6 {color: blue}

form {color: seagreen}

table {border-color: blue;}

Things to note:

· Comments may be inserted anywhere and come between /* and */.

· Semi-colons are used to separate styles and not to terminate them. They are required between styles but not at the end.

· Colons are used between the attribute and its value, i.e. color: blue.

· White space is ignored (space, tab, line-feed).

· A list of tags may all have the same style attached to them.

· Go to http://www.w3schools.com/ to find a list of styles supported by the W3C consortium.

Why Cascading?
There are four levels for style information.

· Inline styles: <body bgcolor = "cyan">.

· Internal style sheets: styles listed between <style type = "text/css"> … </style>.

· External style sheets; style sheets linked to web pages.

· Default values for the browser: such as font, "Times New Roman".

These styles cascade into one style set. An inline style is applied first. If there is a conflict, it has precedence. If there is no inline style set for a tag and there is an internal style sheet, it will be used. If neither of the first two exists for a tag and there is an external style sheet, it comes next. If none of the above exists, browser defaults will be applied.

Linking to an External Style Sheet

To link to an external style sheet, you have to add a line to the top of your web page.

<link rel="stylesheet" type="text/css" href="project-styles.css" />

where project-styles.css is the name of the style sheet. If the sheet is not on the same directory as the web page, more detailed information about the path to it would be required.

<html>

<head>

<link rel="stylesheet" type="text/css" href="project-styles.css" />

<script language = "Javascript" src = "logonscript.js"></script>

<title>Login Form</title>

</head>

<body>

<h2>Please Login</h2>

<form name = "LogonForm" method = "post" action = "../project/login">

Username: <input type = "text" name = "username" />

Password: <input type = "password" name = "password" />

<input type = "submit" value = "Login" onClick = "return CheckForm (LogonForm)"/>

<input type = "reset" value = "Reset" />

</form>

</body>

</html>

Note that this web page also has a link to a Javascript file, logonscript.js. This particular script is used to prevent the form being sent to the server if one of the boxes is empty.

Internal Style Sheets
Styles can also be included in the web page itself. This separates the styles from the tags, but it does not help with establishing uniformity across a number of pages. However, it is very convenient to use when you are developing your web page and style sheet. You only have one file to make changes in, not two.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head>

<title>Table Example</title>

<style type: "text/css">

table

{

border: "1";

border-style: "solid";

border-width: "thin";

cellpadding: "10";

}

caption {font-size: "large"}

th

{

border-style: "solid";

border-width: "thin";

font-size: "medium";

}

td

{

border-style: "solid";

border-width: "thin";

padding-right: "0.5cm";

}

</style>

</head>

<body>

<table>

<caption>Address Table</caption>

<tr> <th>Name</th><th>Email</th><th>Telephone</th> </tr>

<tr> <td>Alice Lee</td><td>alee@aol.com</td><td>123-45-6789</td> </tr>

<tr> <td>Barbara Smith</td><td>bsmith@yahoo.com</td><td>234-56-7890</td> </tr>

<tr> <td>Cathy Jones</td><td>cjones@hotmail.com</td><td>345-67-8901</td> </tr>

</table>

</body>
</html>

[image: image6]
The class Attribute
It is possible to have a style apply to a class that you define. A class attribute is added to a tag, and then all the styles defined for that class will be applied to that tag. For example, we can have two heading tags of the same size that have different styles applied to them.

<h3 class="red-heading">This line is red.</h3>
<h3 class="blue-heading ">This line is blue.</h3>
In the style sheet, class definitions begin with periods.

<style type: "text/css">

.red-heading {color: "red";}

.blue-heading {color: "blue";}

</style>
This means that you can distinguish between different uses of the same tag.

The entire web page follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head>

<title>The class attribute</title>

<style type: "text/css">

.red-heading {color: "red";}

.blue-heading {color: "blue";}

</style>

</head>

<body>

<h3 class="red-heading">This line is red.</h3>

<h3 class="blue-heading">This line is blue</h3>

</body>
</html>
A more extensive example displays a list of topics for the a course. It has a class attribute for centering a line. This may be useful in a number of places. It also has one for styles to apply to a list.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head>

<title>CS 396S Topics</title>

<style type: "text/css">

.center {text-align: "center";}

.topics

{

font-size: "medium";

border-style: "solid";

list-style-position: "inside";

padding: "0.5cm";

}

</style>

</head>

<body>

<h3 class="center">Topics for CS 396S, Servlets and Databases</h3>

<ul class="topics">

Introduction to the WebServer and HTML forms

Access and MySQL databases, SQL: Select, Where

Using the WebServer and HTML forms to get information from a database

XHTML

Installing and configuring the Apache Tomcat server, Java servlets, SQL Insert,

Delete, and Update

XML and the Web Application Deployment Descriptor

Java server pages (JSP) and Java beans

Additional HTML forms, Javascript, CSS - Cascading Style Sheets

More SQL: Metadata, Alter, Create, Creating an XML file from a database table, CSS

for XML

Using the Session object to track users, Adding security: usernames and

passwords

Connection Sharing and Pooling

XML: DTDs

XML: XSLT and Schema

</body>
</html>
In the browser, this looks like the figure below.

[image: image7]
There is much more that you can do with Cascading Style Sheets. See the references.

References
1. Susan Anderson-Freed, Weaving a Website, Prentice-Hall, 2001.
2. The w3schools web site, http://www.w3schools.com/.

�

�

�

�

�

�

��

�

�

� The text by Susan Anderson-Freed, Weaving a Website, Prentice-Hall, 2001, is a good example.

� The tutorial at � HYPERLINK "http://www.w3schools.com/" ��http://www.w3schools.com/� is especially helpful.

[image: image11.emf]

[image: image12.emf]

[image: image13.jpg]Indicate your menu selections.

[image: image14.emf][image: image15.png][Microsoft Internet Explores

‘ Please enter your password

[image: image16.emf]

[image: image17.emf]

