Using Java to Manage a Database
2Using Java to Manage a Database

2The Database Connection

2SQL Queries

3The Select Query

3Statements and ResultSets

3Example Program that Displays the Entire Table

4Finding a Name in the Table

5A Table with Integer and Double Data

7Queries with Non-String Keys

8Update Queries

8Insert

9Delete

10Update

11Prepared Statements

13The Create and Alter Commands

13Create

14Alter

14ResultSet MetaData

16StringBuffers

APPENDIX - DATABASE DESIGN……………………………………………………………………………….18

Using Java to Manage a Database
Applications usually get their data from a database rather than from text files. A relational database consists of one or more tables each of which is made up of rows and columns. Both rows and columns are numbered beginning with one. Each row defines the information for a single object. The columns then are the fields of the object.

The following is an example of a database for an address book that has a table, called AddressTable. It is contained in an Access
 database called addresses.mdb. Each person’s address is contained in a separate row. The field names here are Name, Email, and Telephone. All the data in this example are of type text, strings.

[image: image10.emf]

The Database Connection
To connect to a database using a Java program, you must first register the database with the operating system so that it can find the data source.
 The connection is done with a jdbc-odbc bridge. Jdbc stands for Java database connectivity API (application programming interface), while the ‘O’ in Odbc stands for Open. Odbc is a protocol from Microsoft that is based on the X/Open SQL specification.

In a Java program, we create a Connection object. The lines of code required are:

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

where addresses is the data source name used for the database in the registration information. Both the Connection and DriverManager objects are contained in the Java package, java.sql. This package is a standard part of JDK and so does not have to be downloaded separately. But it must be imported into any program that connects to a database.

SQL Queries
SQL stands for Structured Query Language
 and is usually pronounced sequel. SQL is the standard way to interact with relational databases and is not part of Java. SQL is not case sensitive, so you can mix upper and lower cases, but commands traditionally use upper case. In these examples, all commands begin with an upper case letter. Some examples of commands are Select, Insert, Delete, and Update. You can also modify commands by using connectors such as Where or Set.

The Select Query
Select is used to obtain information from a database table. For example,

"Select * From AddressTable"

will get all (*) the data from the table, AddressTable. If you do not want all the data, you can add a clause that will further define the rows needed. This is done with the modifier, Where.
For example, if you just want the names that begin with the letter A, you can use the query

"Select * From AddressTable Where Name Like 'A%'"

The 'A%' combination is used to indicate a pattern that begins with the letter A. Note the single quotes. SQL queries can also use =, <>, >, <, >=, <=, or Between as well as Like.
 For Between you must specify a range. The query

"Select * From AddressTable Where Name Between 'A%' And 'C%'"
returns the first two entries in the table.
Statements and ResultSets
When sending a query to a database from a program, you first create a Statement object for the query, and then you execute it. If the database is able to execute the query, it returns a ResultSet with the data. A query that returns all the data in the AddressTable uses the following code:

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable";

ResultSet rs = stmt.executeQuery (query);

The result set consists of a sequence of rows. It has a cursor that is initially set to zero, not a valid row in a table. The method, rs.next (), is used to move the cursor to the next row in the set. In addition it returns a boolean value. If the result set is empty, this value will be false, otherwise it returns true. Because it returns a boolean, it can be used as the condition for a while or an if statement.
The particular fields in the row can be obtained using get methods (accessor methods). Since all the items in this database are strings, the get method used here is getString. Other data types can be stored in a database too, so there are getXXX () statements for them as well. For example, if the data in the column are integers, a getInt() method is used.

Example Program that Displays the Entire Table
The following program displays the whole table. This is only reasonable if the table does not contain very much data. It throws a SQLException and a ClassNotFoundException. The first is thrown if there is a problem in accessing the database. The second is thrown if there is a problem getting the connection driver. This would happen if the driver class could not be found.

//
Addresses is a Java application that gets data from a database and displays it on the screen.
import java.sql.*;

public class Addresses

{

public static void main (String [] args)

{

try

{

// Get a connection to the database.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

// Create a statement and a query.

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable";

// Execute the query and retrieve a ResultSet.

ResultSet rs = stmt.executeQuery (query);

System.out.println ("Address Table Results");

// Display the data in the ResultSet.

while (rs.next ())

{

System.out.println ();

System.out.println ("Name: " + rs.getString ("Name"));

System.out.println ("Email: " + rs.getString ("Email"));

System.out.println ("Telephone: " + rs.getString ("Telephone"));

}

con.close (); // Close the connection to the database.

} catch (SQLException e) {System.out.println ("SQL Exception");}

 catch (ClassNotFoundException e) {System.out.println ("Driver not found");}

} // main
} // Addresses
Finding a Name in the Table

The Where modifier can be used to find an email address given a name in a database table. If the name occurs only once in the table, the result set will just contain that row. However, if there are several rows with the same name, the result set will include all of them.

If the name is stored in a variable in the program, it must be surrounded by quotation marks in the query string. The entire string must also be contained in quotation marks. The easiest way to include the quotes surrounding the variable is to use single quotes inside of the double quotes. Since these are difficult to see in the document, boldface has been used for them. The resulting query string is

"Select * From AddressTable Where Name = '" + name + "'"
Note the extra single quote at the end.

The program also uses the Scanner class that is included with Java 1.5.

import java.sql.*;

import java.util.Scanner;

/*
FindEmail is used to find an email address for a person in a database. It finds the name and then displays the person's email address. */

public class FindEmail

{

static Scanner keyboard = new Scanner (System.in);

public static void main (String [] args)

{

try

{

System.out.print ("Whose email address do you want to find? ");

String name = keyboard.nextLine ();

// Get a jdbc-odbc bridge and connect to addresses.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

// Create a statement and execute the query.

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable Where Name = '" + name + "'";

ResultSet rs = stmt.executeQuery (query);

// If the query returns a result, the ResultSet will be non-void.

if (rs.next ())

{

String email = rs.getString ("Email");

System.out.println ("The email address for " + name + " is " + email);

}

else System.out.println ("The name was not found in the database.");

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

} // main

} // FindEmail
A Table with Integer and Double Data

The preceding example has a table with text data only. The following example contains a column that stores integers and one that stores doubles. The table contains data that a grocery store might have with information about some fruit that it sells. It has fields for the product’s id, name, quantity in stock, and price per pound. The id and name fields are text. The quantity field is an Integer
 and the price field is Currency. A sample table is shown below.

[image: image1]
Java, like other languages, must translate the types given by the database into its own datatypes. Integer in Access is interpreted as int by Java and Currency as double. So to retrieve data in the quantity field use rs.getInt ("quantity") and for the price field use rs.getDouble ("price").
A program that prompts for the name of a fruit and then returns the data in the row follows:

//
FindFruit is used to find the quantity and price of fruit in the table, fruit.

import java.util.Scanner;

import java.sql.*;

public class FindFruit

{

static Scanner keyboard = new Scanner (System.in);

public static void main (String [] args)

{

try

{

System.out.print ("What fruit do you want to find? ");

String name = keyboard.nextLine ();

// Get a jdbc-odbc bridge and connect to grocery.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Create a statement and execute the query.

Statement stmt = con.createStatement ();

String query = "Select * From fruit Where Name = '" + name + "'";

// If the query returns a result, the ResultSet will be non-empty.

ResultSet rs = stmt.executeQuery (query);

if (rs.next ())

{

System.out.println ("ID: " + rs.getString ("id"));

System.out.println ("Name: " + name);

System.out.println ("Quantity: " + rs.getInt ("quantity"));

System.out.println ("Price: $" + rs.getDouble ("price"));

}

else System.out.println ("The name was not found in the table.");

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

} // main

} // FindFruit
Queries with Non-String Keys

If we want to find all the fruit that have a quantity greater than some set amount, the quotes around the parameter are not required. Quotes around parameters are only used for strings.

"Select * From fruit Where Quantity >= " + amount
This query returns the data for Apples and Bananas when the amount entered is 20. Note the greater than or equal sign.
//
FindQuantity is used to find all entries with a quantity larger than some amount read in.

import java.util.Scanner;

import java.sql.*;

public class FindQuantity

{

static Scanner keyboard = new Scanner (System.in);

public static void main (String [] args)

{

try

{

System.out.print ("Enter the amount for the lower limit: ");

int amount = keyboard.nextInt ();

// Get a jdbc-odbc bridge and connect to grocery.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Create a statement and execute the query.

Statement stmt = con.createStatement ();

String query = "Select * From fruit Where Quantity >= " + amount;

// If the query returns a result, the ResultSet will be non-empty.

ResultSet rs = stmt.executeQuery (query);

while (rs.next ())

{

System.out.println ("ID: " + rs.getString ("id"));

System.out.println ("Name: " + rs.getString ("name"));

System.out.println ("Quantity: " + rs.getInt ("quantity"));

System.out.println ("Price: $" + rs.getDouble ("price"));

}

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

} // main

} // FindQuantity
Update Queries
Select queries are used to extract information from a database table. The update queries: Insert, Delete, and Update, all modify the table in some way. Insert adds a new row to the table, Delete removes a row, and Update changes one or more of the fields.

Instead of stmt.executeQuery (query), the update queries use stmt.executeUpdate (query). Where executeQuery returns a ResultSet, the method, executeUpdate returns an integer value. If the update is successful, the method returns the number of rows affected (the row count). Otherwise it returns 0.

Insert

The insert query is used to add a row to the database. An example that adds a row to the fruit table is

String query = "Insert into fruit Values ('P456', 'Pears', 35, 2.25)";
The first two fields are strings and are surrounded by quotes. The fields, quantity and price are numeric, so they do not have quotes around them. A picture of the table after the insertion is shown below.

[image: image2]
When the data are given by variables, the typical situation, the quotes have to be separately included in the query. This is a common source of errors. For the example above, the resulting query looks like the following:

String query = "Insert Into fruit Values ('" + id + "', '" + name + "', " + quantity + ", " + price + ")"
Note the placement of single quotes inside of double quotes for the strings, id, and name, and the absence of single quotes for quantity and price.

The insert statement returns an integer value that is 0 if the update failed and is the number of rows inserted if it succeeded. Since we normally insert just one row, it will be 0 if nothing is done and 1 if the data is inserted properly.

The following is a program that reads data from the keyboard and then inserts it into the database. The data is stored in the database either after the connection has been closed or a select query performed.

import java.util.Scanner;

import java.sql.*;

// InsertFruit prompts for data from the keyboard and then stores it in a row in the table.
public class InsertFruit

{

static Scanner keyboard = new Scanner (System.in);

// Insert a new product into the database.

public static void main (String [] args)

{

try

{

// Get a jdbc-odbc bridge and connect to grocery.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Get the new data.

System.out.print ("ID: ");

String id = keyboard.nextLine ();

System.out.print ("Name: ");
String name = keyboard.nextLine ();

System.out.print ("Quantity: ");
int quantity = keyboard.nextInt ();

System.out.print ("Price: ");

double price = keyboard.nextDouble ();

// Create Insert query statement.

Statement stmt = con.createStatement ();

String query =

"Insert Into fruit Values ('" + id + "', '" + name + "', " + quantity + ", " + price + ")";

// Execute update query.

int success = stmt.executeUpdate (query);

// Report whether or not the update was successful.

if (success == 0) System.out.println ("Insert error.");

else System.out.println ("Data inserted.");

con.close ();
// Close the database connection.

} catch (SQLException ex) {System.out.println ("SQL Exception.");}

catch (ClassNotFoundException e) {System.out.println ("Class Not Found.");}

} // main

} // InsertFruit

Delete
The delete command is used to delete a row in the database. A key field is used to determine the appropriate row. The query here is "Delete From fruit Where id = '" + keyId + "'". This deletes the row with the id provided by the user.

import java.util.Scanner;

import java.sql.*;

// DeleteFruit removes a row from the database table.
public class DeleteFruit

{

static Scanner keyboard = new Scanner (System.in);

public static void main (String [] args)

{

try

{

// Get a jdbc-odbc bridge and connect to grocery.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Get the id for the product to be deleted.

System.out.print ("ID of row to be removed: ");

String keyId = keyboard.nextLine ();

// Create a query and execute the update.

Statement stmt = con.createStatement ();

String query = "Delete From fruit Where id = '" + keyId + "'";

int success = stmt.executeUpdate (query);

stmt.close ();

// Indicate whether or not the deletion was successful.

if (success == 0) System.out.println ("ID not found");

else System.out.println ("Row deleted.");

con.close ();

} catch (ClassNotFoundException e) {System.out.println ("Class Not Found Exception.");}

catch (SQLException es) {System.out.println ("SQL Exception");}

} // main

} // DeleteFruit
Update

The update query is somewhat similar to the Insert query. Update is used to change an entry in the database, such as a price. The query must include a key to indicate which row is to be changed. For example, to change the price of a product in the row with a given id, we can use the following query:

"Update fruit Set price = " + newPrice + " Where id = '" + id + "'";
This query also uses the method, executeUpdate.

import java.util.Scanner;

import java.sql.*;

// ChangePrice reads in an id and a new price and changes the price in the table.
public class ChangePrice

{

static Scanner keyboard = new Scanner (System.in);

public static void main (String [] args)

{

try

{

// Get a jdbc-odbc bridge and connect to grocery.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Get the new data

System.out.print ("Enter the ID: ");

String id = keyboard.nextLine ();

System.out.print ("Enter the new price: ");

double newPrice = keyboard.nextDouble ();

// Create a query and execute the update.

Statement stmt = con.createStatement ();

String query = "Update fruit Set price = " + newPrice + " Where id = '" + id + "'";

int success = stmt.executeUpdate (query);

stmt.close ();

// Check whether or not the updated was carried out.

if (success != 0) System.out.println ("Price Changed.");

else System.out.println ("Error, price not changed.");

con.close ();

} catch (ClassNotFoundException e) {System.out.println ("Class Not Found Exception.");}

catch (SQLException es) {System.out.println ("SQL Exception");}

} // main

} // ChangePrice
It is possible to change several fields at the same time. The following query can be used to change both the quantity and the price.

"Update table Set quantity = 30, price = 1.50 Where id = 'P136'"
If the data are stored in the variables newQuantity and newPrice, it would be

"Update fruit Set quantity = " + newQuantity + ", price = " + newPrice + " Where id = '" + id + "'"
Prepared Statements

If an update is to be done a number of times, it may save time to read the data from a file and to prepare the statement before executing all the updates. This is done with the Java object, PreparedStatement. In a prepared statement, variables are replaced by question marks (‘?’).

An insert statement for the grocery database might look like:

String stmt = "Insert Into fruit Values (?, ?, ?, ?)";
This statement is then ‘prepared’ so that it can be used inside a loop.

PreparedStatement prepStmt = con.prepareStatement (stmt);
In the loop, the data has to be ‘set’ into the statement. Each question mark has a number, beginning with 1. To replace the first question mark with the value of the variable, id, use:

prepStmt.setString (1, id);
Similarly, the quantity would be inserted with

prepStmt.setInt (3, quantity);

The following program uses a Scanner to read from the file, data.txt. The data file consists of a number of lines, each similar to the following:

S543 Strawberries 30 3.25

B345 Blueberries 50 2.35
Each entry is separated by white space, i.e. a space, tab, or end of line character. (Other delimiters can be used as well.) The Scanner for this file is created by

Scanner scanner = new Scanner (new File ("data.txt"));
The data can be read inside a while loop that has scanner.hasNext () as its condition. Inside the loop, the data is read, set into the prepared statement, and the statement is executed. This is more efficient than creating a new Insert statement each time through the loop.

The entire program follows.

import java.util.Scanner;
import java.io.*;

import java.sql.*;

public class InsertFromFile

{

public static void main (String [] args)

{

try

{

// Get a jdbc-odbc bridge and connect to grocery.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Create a prepared statement for inserting the data.

String stmt = "Insert Into fruit Values (?, ?, ?, ?)";

PreparedStatement prepStmt = con.prepareStatement (stmt);

// Get a scanner for the data file and read the data.

Scanner scanner = new Scanner (new File ("data.txt"));

while (scanner.hasNext ())

{

// Set the values for the prepared statement.

prepStmt.setString (1, scanner.next ());
// Set the id.

prepStmt.setString (2, scanner.next ());
// Set the name.

prepStmt.setInt (3, scanner.nextInt ());
// Set the quantity.

prepStmt.setDouble (4, scanner.nextDouble ());
// Set the price.

// Execute update.

int success = prepStmt.executeUpdate ();

// Show whether or not the update was successful.

if (success == 0) System.out.println ("Insert error.");

else System.out.println ("Data inserted.");

}

con.close ();

} catch (SQLException ex) {System.out.println ("SQL Exception.");}

catch (ClassNotFoundException e) {System.out.println ("Class Not Found.");}

catch (FileNotFoundException e) {System.out.println ("No file.");}

} // main

} // InsertFromFile

The Create and Alter Commands
The Create and Alter commands change the database structure. The Create command adds a new table to the database, while the Alter command adds a new column to an existing table. For example, we might want to have a table in the grocery database for dairy products. Or we might want to add a column for the variety of fruit to the database.
Create

The Create command is used to add a new table to the database. You must specify both the name of the table, the names of all the columns, and the data type of each column. In Access you should use the datatypes that can be found on the Design View screen. These include Text, Number, and Currency. The following is a command to create a new table called dairy in Access.

"Create Table dairy (id varchar, name varchar, quantity Integer, price Currency)"
If you are using a different database, such as MySQL, use the datatypes listed in the following table.
 These datatypes do not all work in Access. However, they are the standard SQL datatypes.
	Data Type
	Description

	integer(size)
int(size)
smallint(size)
	Hold integers only. The maximum number of digits is specified in parenthesis.

	decimal(size,d)
numeric(size,d)
	Hold numbers with fractions. The maximum number of digits is specified in "size". The maximum number of digits to the right of the decimal is specified in "d".

	float(n)

real

double
	Floating point number with n binary digits of precisions.

32-bit floating point number.

64-bit floating point number.

	char(size)
	Holds a fixed length string (can contain letters, numbers, and special characters). The fixed size is specified in parenthesis.

	varchar(size)
	Holds a variable length string (can contain letters, numbers, and special characters). The maximum size is specified in parenthesis.

	date(yyyymmdd)
	Holds a date

The command to create a new table in MySQL and other databases is

"Create Table dairy (id varchar(5), name varchar(15), quantity int(5), price decimal(10,2))";
In both cases, the command is executed using the executeUpdate method.

// Create a statement and execute the query.

Statement stmt = con.createStatement ();

String query = "Create Table dairy (id varchar, name varchar, quantity int(5), price decimal(10,2))";
stmt.executeUpdate (query);

Alter

The Alter command is used to add a column to an existing table. The general form for it is

"Alter Table fruit Add variety varchar(15)"
or

"Alter Table fruit Add variety varchar"
Use the second form in Access.

In some databases you can also drop a column. The form is

"Alter Table fruit Drop Column variety"
Not all databases allow you to do this.

These commands also use the executeUpdate method.
ResultSet MetaData
MetaData consists of information about the structure and names used in a table. This can be useful if you wish to display a table but do not know everything about it. You can write a generic method that can be used for any database table, given the table’s name.

To obtain metadata, you must first execute a query and retrieve a result set. The metadata comes along with the result set. For example, in the fruit table, we can first use a Select query to get a result set and then use that to get the metadata.

Statement stmt = con.createStatement ();

String query = "Select * From fruit";

ResultSet rs = stmt.executeQuery (query);

ResultSetMetaData metaData = rs.getMetaData ();

Some of the information you can get from the ResultSetMetaData includes the number of columns, their names, and their datatypes. The following is a method that can be used to create an html table to display the fruit table. It uses a cascading style sheet
 to add style information to the web page.
import java.sql.*;

import java.io.*;

public class CreateHTML

{

public static void main (String [] args)

{

try

{

// Get a PrintWriter to write the output file.

PrintWriter out = new PrintWriter (new FileOutputStream ("fruit.html"));

// Get a jdbc-odbc bridge and connect to grocery.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Create a statement and get the ResultSet.

Statement stmt = con.createStatement ();

String query = "Select * From fruit";

ResultSet rs = stmt.executeQuery (query);

// Use the ResultSet to get the metadata.

ResultSetMetaData metaData = rs.getMetaData ();

int numberColumns = metaData.getColumnCount ();

// Create the html page.

createHeader (out, "Fruit");

out.println ("<table>");

// Create a caption for the table.

out.println ("<caption>Fruit</caption>");

// Display the column names in the heading.

out.println ("<tr>");

for (int count = 1; count <= numberColumns; count ++)

out.print ("<th>"+metaData.getColumnName (count)+"</th>");

out.println ("</tr>");

// Display all the data in the table.

while (rs.next ())

{

out.println ("<tr>");

for (int count = 1; count<= numberColumns; count ++)

out.print ("<td>"+rs.getString (count)+"</td>");

out.println ("</tr>");

}

out.println ("</table></body></html>");

out.close ();

} catch (IOException e) {System.out.println ("IO Exception");}

catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

catch (SQLException e){System.out.println ("SQL Exception");}

} // main

// createHeader adds a standard header to the html page.

public static void createHeader (PrintWriter out, String title)

{

out.println ("<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'>");

out.println ("<link rel='stylesheet' type='text/css' href='grocerystyles.css' />");

out.println ("<html>");

out.println ("<head>");

out.println ("<title>" + title + "</title>");

out.println ("</head>");

out.println ("<body>");

} // createHeader

} // CreateHTML
The following shows the html and the web page.

<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'>

<html>

<head>

<title>Fruit</title>

</head>

<body>

<table border='1' cellspacing='10'>

<caption>Fruit</caption>

<tr>

<th>id</th><th>name</th><th>quantity</th><th>price</th></tr>

<tr>

<td>A136</td><td>Apples</td><td>30</td><td>1.2500</td></tr>

<tr>

<td>B216</td><td>Bananas</td><td>30</td><td>.7500</td></tr>

<tr>

<td>O356</td><td>Oranges</td><td>10</td><td>2.5000</td></tr>

</table></body></html>

[image: image3]
StringBuffers

Many of the queries really should be done using a StringBuffer. A StringBuffer is like a String, but it can be modified. Each time something is appended to a String, a new object is allocated and the old one is left for the garbage collector to delete. Unlike Strings, a StringBuffer must be instantiated. Its constructor can either have no parameters or some initial capacity. If the former, the initial size will be 16 characters.

An insert query would be better written as:

StringBuffer queryString = new StringBuffer (50);

queryString = "Insert Into fruit Values ('" .append(id).append("', '").append(name).append("', ")

.append(quantity).append(", ").append(price).append(")");

String query = queryString.toString ();
This is somewhat harder to read, but it is more efficient.
References

1. Susan Anderson-Freed, Weaving a Website, Prentice Hall, 2002

2. Karl Moss, Java Servlets Developer’s Guide, McGraw-Hill/Osborne, 2002.

3. W3Schools Online Web Tutorials, http://www.w3schools.com.

Appendix - Database Design

When creating a new database, start by listing all the objects that will be involved. These are the things that you want to store information about. Next make a list of the data needed for each object. For example, in a contact list, the data will consist of names, addresses, telephone numbers, email addresses, etc.

After listing the objects and their data, consider the relationships between the objects. A club might have the names and addresses of members in one list and the events that the club sponsors in another. The relationship between them might be the lists of members that will attend the events.

Both the objects and the relationships will be modeled by tables in the database. And the data describing the objects and relationships will be given by the fields (columns) of the tables. The tables for the relationships most often consist of pointers to the objects that are involved. The list of members attending events would include both an id or name for the member and the name or date of the event.

Library Database Example

There are a number of objects that should be part of a library database, but we will look only at the books and the borrowers. The library also has a staff; they contact publishers and book dealers. They hold events and have facilities to manage. All this requires a budget and sources of income. Some portion of the support for a library comes from donors and clients. A complete database, sometimes called an Enterprise Resource Plan (ERP), would encompass all of these areas.

A small portion of a table of library books might look as follows:

[image: image4.emf]

The ISBN (International Standard Book Number) is the usual way to keep track of books. A real library table would also have the Library of Congress Number. This catalog number is used to locate a book in the stacks of the library. It is used to keep books on similar topics together.

The table for the borrowers would normally have a lot of data including the complete addresses of the people. This will be replaced here with just their email addresses and phone numbers.

[image: image5.emf]

However, there are other things to consider. Should we keep all the books that a person borrows together with the address, telephone number, etc.? This might either require us to put an artificial limit on the number of books that someone can borrow or risk a lot of duplicate data.

The following table shows what would happen if we said that no one could take out more than two books at a time.

[image: image6]
Another possibility would be to include separate records for each book.

[image: image7.emf]

This has several disadvantages. The first is that we no longer have a key field. The ID field has been duplicated a number of times for each borrower. And the obvious other disadvantage is that we have the same data duplicated in several places. This means that any changes to the data, such as new telephone numbers or addresses would have to be made in more than one place. In addition, it really makes no sense to store temporary data, such as the loan data with permanent information about addresses and telephone numbers.

The solution is to construct a separate table just for the loan information. This will be a relationship table, since it will relate the borrowers table to the books table. In the new table we need the borrowers ID, the book’s ISBN, and the date the book is due. The primary key can be created from the ISBN and the borrowers ID. The borrowers ID is duplicated and it could be left out, since the LoanKey contains this information. However, leaving it in makes it easier to find all the books loaned out to a particular borrower.

[image: image8]
Entity Relationship Diagrams

It is often easier to see how things fit together using visual information rather than descriptions. Entity relationship diagrams were introduced a number of years ago to help with database design. An entity is an object, such as a book or a borrower. An entity has attributes, such as title, author, name, phone, etc. Several entities can interact in a relationship. In the previous example, a relationship between books and borrowers is formed when a borrower checks out a book from the library.

In the diagrams, entities are usually represented by boxes, relationships by diamonds, and attributes by ovals.

[image: image9]
The attributes of a book are ISBN, Author, Title, Publisher, Date, and OnLoan. The attributes for a borrower are ID, Name, Email, and Phone. The relationship here is illustrated by the OnLoan table. It has fields LoanKey, ISBN, BorrowersID, and DueDate. Only a few attributes are displayed in the diagram.

�

�

�

�

�

�

Book

Borrower

� Access is part of Microsoft’s Office suite of programs. It is in the Professional edition.

� To connect to the database using a Java program, you must first register the database with the operating system. In Windows 98 this is done by clicking on Settings/Control Panel/Data Sources (ODBC). In Windows 2000 or XP, you will find this same file in Settings/Control Panel/Administrative Tools. Select Add/Microsoft Access Driver (*.mdb), and from there Browse to find the location of your database.

� For more information about SQL see the W3Schools web site, � HYPERLINK "http://w3schools.com" ��http://w3schools.com�.

� See � HYPERLINK "http://www.w3schools.com" ��http://www.w3schools.com� for more details.

� Java version 1.5 is available from Sun Microsystems at � HYPERLINK "http://java.sun.com/j2se/1.5.0/download.jsp" ��http://java.sun.com/j2se/1.5.0/download.jsp�. It is also in the documents folder on my website.

� In Access, the Number field can be changed by first clicking on the default, Long Integer, and then clicking on the drop down menu on the right. From that menu you can choose byte, integer, double, etc.

� This table was copied from the w3schools website, � HYPERLINK "http://www.w3schools.com" ��http://www.w3schools.com�.

� For information about CSS, cascading style sheets, see � HYPERLINK "http://www.w3schools.com" ��http://www.w3schools.com� or the text by Susan Anderson-Freed, Weaving a Website, Prentice Hall, 2002.

PAGE
1

[image: image11.emf]

[image: image12.emf]

[image: image13.jpg]Frat

id || name |quantity | price
156 [hopes | 0| [12300

{5216] Banams [0 | [7500

(0356 [Cranges [10 | [25000

[image: image14.emf]

[image: image15.emf]

