CS121/IS232
Arrays of objects
A class is used to hold data about an object. The object is often a physical object, but sometimes it is something more abstract. Suppose that we have a class that models the work of an accountant. We can read data in from a file and store it in an array of classes. Each class can store data about some item that the zoo has purchased and the accountant must keep track of.

fileScan

purchases []

item
	49.95
	
	0
	o
	
	49.95

	bamboo shoots
	
	1
	o
	
	bamboo shoots

	77.50
	
	2
	null
	
	

	bales of hay
	
	3
	null
	
	77.50

	71.20
	
	4
	null
	
	bales of hay

	shrimp
	
	5
	null
	
	

	…
	
	6
	null
	
	

	
	
	7
	null
	
	

	
	
	8
	null
	
	

	
	
	9
	null
	
	

Data must be read item by item from the file, but then it can be stored in a single object that contains data about an item. Both the array and all the classes in the array have to be separately instantiated. We have to first get a new array

Item [] purchases = new Item [20];
and then each time we read the data for an item, we have to get a new class to store it in.

Item item = new Item (name, cost);

The Item class is similar to the Animal class that we had before.

package zoo;

public class Item

{

private String name;

private double cost;

public Item (String n, double c)

{

name = n;

cost = c;

} // constructor

public String getName () {return name;}

public double getCost () {return cost;}

public void displayItem ()

{

System.out.print ("The cost of" + name + " was " + cost);

} // displayItem
} // Item
The Accountant class now reads the purchases from the file and stores them in an array of items.

package zoo;

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

/*

 * The Accountant class contains methods that help the zoo keeper keep track of purchases.

 */

public class Accountant

{

Scanner fileScan;

private Item [] purchases;

private int noPurchases;

public Accountant ()

{

purchases = new Item [20];

try

{

fileScan = new Scanner (new File ("expenses.txt"));

} catch (FileNotFoundException e) {System.out.println ("File not found");}

} // constructor

public void getPurchases ()

{

int count = 0;

while (fileScan.hasNext ())

{

double cost = fileScan.nextDouble ();

String name = fileScan.nextLine ();

Item item = new Item (name, cost);

purchases [count] = item;

item.displayItem();

count ++;

}

noPurchases = count;

} // getPurchases

public double getTotalCost ()

{

double total = 0;

for (int count = 0; count < noPurchases; count ++)

total = total + purchases [count].getCost();

total = Math.round(total * 100) / 100.0;

return total;

}

} // Accountant

The advantage of using a class for the items is that we can easily change it and add more fields. For example, if we wanted to include both the cost of an item and the quantity, we will not have too many things to change. As an example, suppose the first three items in the file are now

hay

750 bales

95.35 per bale

various grains

6 tons

172.50 per ton

shrimp

100 pounds

7.12 per lb.
To handle this, we have to make a few changes to the Item class.

package zoo;
public class Item

{

private String name;

private double price, cost;
// price added

private int quantity;

// quantity added

public Item (String n, double p, int q)

{

name = n;

price = p;

// added

quantity = q;

// added

cost = price * quantity;
// computed

} // constructor

public String getName () {return name;}

public double getCost () {return cost;}

public void displayItem ()

{

System.out.println ("The cost of " + name + " was " + cost);

} // displayItem
} // Item

We also have to change the method in the Accountant class that does the reading. Everything else in the class remains the same except the name of the file that has the data.

public void getPurchases ()

{

int count = 0;

while (fileScan.hasNext ())

{

String name = fileScan.nextLine ();

int quantity = fileScan.nextInt ();

String size = fileScan.nextLine ();

double price = fileScan.nextDouble();

String per = fileScan.nextLine();

Item item = new Item (name, price, quantity);

purchases [count] = item;

item.displayItem();

count ++;

}

noPurchases = count;

} // getPurchases

The first three lines of output are now

The cost of hay was 71512.5

The cost of various grains was 1035.0

The cost of shrimp was 712.0
And the final line is

The total cost for the month is $101728.55
