CS121/IS232
Object Oriented Programming
The idea behind object oriented programming is that programs are organized around the objects in a program rather than the methods. Instead of considering what is done in a program, designers consider what objects are involved and what data and actions they are responsible for.

In our zoo, the objects are animals, zookeepers, visitors, animal food and accountants. There would also be employees with their hours and salaries, other expenses such as heat and electricity, building upkeep, grants and donors, etc. A complete program for a zoo would have to be able to model all of these.

Modeling in Java and C++ is done using classes. Each class should represent some object. There are exceptions to this, or course. These are utility classes such as the Math and Scanner classes. They contain useful methods and data that other classes can take advantage of.

But in most cases, we can refer to actual physical objects when we design a program. And we can consider what data they need to keep track of and what actions they may have to take. Classes have been set up so that they contain both data and methods. The data is usually kept private, so that only the methods in the class itself can change it. Methods that are used only in the class are also usually private, but any method needed by another class is listed as public.
Consider the following classes
public class Animals

{

public static void main (String [] args)

{

Horse horse = new Horse ();

horse.readData ();

horse.displayData ();

}

} // Animals

import java.io.*;

import java.util.*;

public class Horse

{

private int age;
// age is an instance variable.

Scanner scan = new Scanner (System.in);

public void readData ()

{

System.out.print ("Enter the horse's year of birth: ");

int birthyear = scan.nextInt ();
// birthyear is a local variable.

age = 2007 – birthyear;

} // readData

public void displayData ()

{

System.out.println ("The horse's age is " + age);

} // displayData
} // Horse

This Horse class is public, which means that other classes can access it and use (call) its public methods. It has two items of data: an integer, age, and another class, Scanner. The first is private, and therefore other classes cannot modify it directly. Scanner is a utility class available to all classes. There is no reason to make it private, since its methods cannot be changed anyway.
The variable, birthyear, is a local variable. It can only be accessed within the method where it is defined. If you try to access it outside of that method, you will get a syntax error. Also if list it as private, you will also get a syntax error. It is private by default. Use local data whenever the variable is not needed elsewhere. You can think of them as scratch paper. They are used for intermediate computations.
The variable, age, is an instance variable (or a class variable). It can be accessed anywhere within the class. If it is public, it can also be accessed by other classes. Most instance variables are made private, so that other classes cannot change them by mistake. In Java this is harder to do than in some other languages, because they must be prefaced by the instance of the class. Still making them private is prudent.
In the Animals class, horse is the name of an instance of the Horse class. We can have several instances of a class at the same time, say stallion and mare.

Horse stallion = new Horse ();

Horse mare = new Horse ();

The two instances will have the same form, but they can have different data. For example the age of the stallion might be 4 while that of the mare 10.

Scanner is a utility class that is there only to serve other classes. It models keyboard and file input. But it is mainly useful for the methods it contains used to read data. We have to get a new instance of the class, unlike the Math class (another utility class), because we have to tell it whether to read from System.in (the keyboard) or from a file.

Public classes must be contained in separate files that have the same name as the class. So Animals must be in a file called Animals.java and Horse must be in a file called Horse.java. In a project, one of the classes has to contain a main method, if it is to be run as an application. Applets are different and contain an init method. They do not have to have a paint method, but they do have to import the appropriate awt packages.
