CS121/IS232
Object Oriented Programming – Inheritance
An important feature of object oriented programming is that one class can inherit data and methods from another. This allows a programmer to put common data and methods in one class and have it used by several others.

A nice example of this is that of insurance policies. These policies have a number of things in common, such as the policy’s owner and id. But they differ on a number of other things. For example, car policies list the make, model and year of a car, while life polices have a beneficiary and cash value. These are shown in the following example.

package insurance;

public class TestInsurance

{

/**

 * Object Oriented Programming Example

 */

public static void main(String[] args)

{

CarInsurance carInsurance = new CarInsurance ();

carInsurance.getInsurance ();

carInsurance.displayInsurance ();

LifeInsurance lifeInsurance = new LifeInsurance ();

lifeInsurance.getInsurance ();

lifeInsurance.displayInsurance ();

}

} // TestInsurance

package insurance;

import java.util.*;

public class Insurance

{

protected String id, owner;

protected Scanner scan = new Scanner (System.in);

public void getInsurance ()

{

System.out.print ("ID: ");

id = scan.nextLine ();

System.out.print ("Owner: ");

owner = scan.nextLine ();

} // getInsurance

public void displayInsurance ()

{

System.out.println ("The owner is " + owner);

System.out.println ("The ID is " + id);

} // displayInsurance

} // Insurance

package insurance;

public class CarInsurance extends Insurance

{

private String make, model;

private int year;

public void getInsurance ()

{

super.getInsurance ();

System.out.print ("Make: ");

make = scan.nextLine ();

System.out.print ("Model: ");

model = scan.nextLine ();

System.out.print ("Year: ");

year = scan.nextInt();

} // method readInsurance

public void displayInsurance ()

{

super.displayInsurance ();

System.out.println ("The make of the car is " + make);

System.out.println ("The model of the car is " + model);

System.out.println ("The year is " + year);

} // method displayInsurance

} // CarInsurance

package insurance;

public class LifeInsurance extends Insurance

{

private String beneficiary;

private double policyValue;

public void getInsurance ()

{

super.getInsurance ();

System.out.print ("Beneficiary: ");

beneficiary = scan.nextLine ();

System.out.print ("Policy Value: ");

policyValue = scan.nextDouble ();

} // getInsurance

public void displayInsurance ()

{

super.displayInsurance ();

System.out.println ("The beneficiary is " + beneficiary);

System.out.println ("The policy value is " + policyValue);

} // displayInsurance

} // Life Insurance

The super class, Insurance, contains the common variables: id, owner and scan. It also contains methods that are extended by the subclasses, CarInsurance and LifeInsurance. The variables in the Insurance class are protected. They are inherited by the subclasses, and as far as these classes are concerned, they are part of their data. So the variables in the CarInsurance class are: id, owner, make, model and year. The variables for the LifeInsurance class are: id, owner, beneficiary and policyValue.
The methods in the Insurance class are extended by the methods in the CarInsurance and LifeInsurance classes. These methods first execute the corresponding methods in the super class, using the identifier, super, as in super.getInsurance (); and super.displayInsurance ();. The call to the super class method must always come first in the subclass method.
This means that common variables and code will be programmed only once, but they may be used in a number of places in the program. This prevents excessive duplication and ties together similar things. You can think of factoring out the common elements and placing them in the super class.
Another example is that of shapes drawn by an applet. This is an example of polymorphism. “In computer science, polymorphism means allowing a single definition to be used with different types of data (specifically, different classes of objects). For instance, a polymorphic function definition can replace several type-specific ones, and a single polymorphic operator can act in expressions of various types.” (From Wikipedia at http://en.wikipedia.org/wiki/Polymorphism_(computer_science)).
In this example, a shape can be either a circle or a rectangle, depending upon which class is instantiated.

package shapes;

import java.awt.*;

import java.applet.Applet;

public class Shapes extends Applet

{

private Shape shape;

private Circle circle;

private Rectangle rectangle;

private static final long serialVersionUID = 42L;

public void init ()

{

shape = new Shape (Color.blue, 50, 100);

circle = new Circle (Color.red,100, 100, 30);

rectangle = new Rectangle (Color.green, 200, 100, 60, 40);

} // init

public void paint (Graphics g)

{

shape.drawShape (g);

shape = circle;

shape.drawShape (g);

shape = rectangle;

shape.drawShape (g);

} // paint

} // Shapes

package shapes;

import java.awt.*;

public class Shape

{

protected Color color;

protected int x, y;

Shape (Color c, int xPosition, int yPosition)

{

color = c;

x = xPosition;

y = yPosition;

} // constructor

public void drawShape (Graphics g)

{

g.setColor (color);

g.drawString ("Shape", x, y);

} // drawShape

} // Shape

package shapes;

import java.awt.*;

public class Circle extends Shape

{

private int radius;

Circle (Color c, int x, int y, int r)

{

super (c, x, y);

radius = r;

} // constructor

public void drawShape (Graphics g)

{

g.setColor (color);

g.fillOval (x, y, 2*radius, 2*radius);

} // drawShape

} // Circle

package shapes;

import java.awt.*;

public class Rectangle extends Shape

{

private int width, height;

Rectangle (Color c, int x, int y, int w, int h)

{

super (c, x, y);

width = w;

height = h;

} // constructor

public void drawShape (Graphics g)

{

g.setColor (color);

g.fillRect (x, y, width, height);

} // drawShape

} // Rectangle

[image: image1.png]Shape

Applet started

First the applet draws the string, "Shape". Next circle is assigned to shape, so it draws a circle. Last rectangle is assigned to shape, so it draws a rectangle. The class, Shape, contains only the variables color, x and y. The class, Circle, in addition contains the variable radius. While the class, Rectangle, also contains the variables width and height.

Here the constructor in the super class is executed by the constructors in the subclasses. The call to the super class constructor must come first in the subclass constructor.

Circle (Color c, int x, int y, int r)

{

super (c, x, y);

// This executes the constructor in the Shape class.

radius = r;

} // constructor

When this applet is run, the three classes are instantiated, resulting in three locations in memory. Then the drawShape method in the first class is executed. When done, the variable shape is assigned the value stored in the variable circle. Since that is the address of the circle class in memory, the drawShape method in the circle class is run. Finally the variable shape is assigned the address of the rectangle class, so the drawShape method in the rectangle class is executed.

