CS121/IS223

Datatypes and expressions
There are a number of basic datatypes. The ones we have looked at so far are int, double, char and boolean. The int and double datatypes are divided into a number of different ones, depending upon their size.

int – byte, short, int, long (1, 2, 4, 8 bytes)

double – float, double (4, 8 bytes)

Integers are stored in binary form, so that 11 is stored in memory as 00001011. The left-most bit is the sign bit. A 0 is used for positive and a 1 for negative. (They are actually stored in something called two’s complement form. We will not go into that here.)

Doubles are stored in scientific notation and have two parts, the mantissa and the exponent. The decimal point is assumed to be all the way to the left. So the number 12.3456 has a mantissa of 123456 and an exponent of 2.

The char datatype uses the Unicode character set (or sets). There are a number of them, but we generally use UTF-8. It uses one byte to store characters, and the first 128 codes are ascii. The codes from 128 to 255 code for some of the non-ascii characters used in the West. Character constants are enclosed in single quotes.
The boolean datatype is stored in a single byte and can only have the values of true and false. It is used to signal when some condition changes, such as the results of a search.

boolean found = false; // Initially the item has not been found.

Then when the item has been found, the program can indicate this by

found = true;

The String datatype is different. Once a String variable has been assigned a value, it does not change. So if you start with

String name = "Alice";

and then add on another string using concatenation

name = name + " Lee";

Java will find a new location in memory that can hold 9 bytes and store "Alice Lee" in it. The old location and data are still there, but they can no longer be accessed. This is very wasteful of memory and is not advisable for longer programs. (A StringBuffer is used instead.)

We have created a number of new datatypes so far in the laboratory. The first was ZooKeeper and the second was your animal class, such as Panda. These classes are complex datatypes, in contrast to int and double, which are simple ones. These classes contain both data, simple or complex, and methods. For example, in lab 4, the data in the animal class were

String name;

int age;

Scanner scan = new Scanner (System.in);

The Scanner class is a complex datatype. It contains a number of methods, including nextLine (), nextInt () and nextDouble ().

Complex datatypes must be instantiated using the new operator. When a line such as

Panda panda = new Panda ();

is encountered in a program, the system must find a place in memory for the data and the methods of the class.

panda

	Mei Ling
	
	

	6
	
	

	
	
	Pointer to code for the constructor

	
	
	Pointer to code for displayData

The address of the location is stored in the variable, panda.

Expressions

Expressions consist of numbers, variables and operators. The numbers can be integer or decimal, the variables can be ints or doubles, and the operators are +, -, *, /, %. Integer division divides and discards the decimal part. Integer remainder returns what is left over.
The order that is used for the calculations depends upon operator precedence and parentheses. The precedence is that *, / and % are performed before + and -. Within the groups, left-to-right association is used.

18 * 10 / 5 * 3 = (18 * 10) / 5 * 3 = (180 / 5) * 3 = 36 * 3 = 108
One type may be changed to another type using a cast. The new type is enclosed in parentheses and precedes the number or variable to be changed.

double price = 39.95;

int cost = (int) price; // 39 will be stored in cost.

Double arithmetic is not exact. There is often a small error, so that instead of 31.25, you may get 31.249999999999993. We can change this to a more reasonable answer by using the round method in the Math class. Math.round (…) rounds the value in the parentheses to the nearest integer. So if we first multiply by 100 and then round the value, we will get

Math.round (31.249999999999993 * 100) = 3125.

If we now divide by 100.0, the result will be 31.25. However, if we just divide by 100, we will get 31, since integer division discards the fractional part.

10 - 5 - (10 + 7) % 3

15 + 30 / 5.0 * 2 - 9

50 + 4 * 5 - 20 / 6

10 % 3 + 10 / 3

5 * 15.2 / 10 + 20 + 3 * 25

(double) (25 / 3)

25 / (double) 3

