CS121/IS223

Reading from the keyboard with Scanner
Printing out information is fine, but we also need to be able to read it in. There are a number of places that we can read from including the keyboard, files and databases. We will start with the keyboard.

Everything typed at the keyboard goes into a location in the computer called a buffer. When you hit the enter key, the data in the buffer is made available to the program. The program starts at the beginning of the line and reads what it is asked for. The reading is done by a class called Scanner (new in Java 5). Strings are read using nextLine (), integers using nextInt (), and doubles using nextDouble ().

When reading from the keyboard, we always need to have a prompt preceding the reading so that the user knows what is expected. If you type in a letter when the program is expecting an int, you will get a run-time error.

Scanner is in the java.util package, so it has to be imported into the program. We will see other import statements in the future.
package zoo;

import java.util.Scanner;

public class Panda

{

private String name;

private int age;

Scanner scan = new Scanner (System.in); // The Scanner class has to be instantiated.

public void getData ()

{

System.out.print ("Enter the panda's name: "); // Prompt for the user.

name = scan.nextLine ();

System.out.print ("Enter the panda's age: "); // Prompt for the user.

age = scan.nextInt ();

} // getData

public void displayData ()

{

System.out.println (name + "'s age is " + age);

} // displayData

} // Panda
We also have to change the ZooKeeper class in order to use (call) the new method in the Panda class.
package zoo;

/**

 * The zoo keeper manages the data for the animals in the zoo.

 */

public class ZooKeeper

{

public static void main(String[] args)

{

Panda panda = new Panda ();

panda.getData ();

panda.displayData();

} // main

} // ZooKeeper
Doing arithmetic with Java (and other languages).

Java has the usual arithmetic operators, +, -, *, /. The first three work the expected way, but the divide does not. If the numbers are integers, it performs the division and then drops the fractional part. It does not round. If the numbers are doubles, it divides normally and keeps the fractional part with a lot of decimal places. The fractional part can be obtained using the % operator (17 % 3 is 2). Parentheses change the order that operations are done in the usual way.

Examples:

1. 2 * (3 + 4) is 2 * 7 = 14

2. 2 * 3 + 4 is 6 + 4 = 10

3. 15 / 4 = 3 since the fractional part is dropped

4. 4 / 15 = 0 since the quotient is zero

5. 4.0 / 15 = 0.266666666666666, the 4.0 also affects the 15
6. 27 / 4 = 6 while 27 % 4 = 3
We can change from one type to another using a cast. The new type is indicated by the name of the data type in parentheses precedes the number or variable.

1. (int) 2.7 = 2

2. (double) 5 = 5.0

3. (int) 15.5 * 6 = 90

4. (double) 25 / 3 = 8.33333333333334

