Web Application Programming Using Java
Web applications are used for a number of different purposes including e-commerce, on-line library access, clubs and associations, and school classes. They consist of a collection of programs and web pages written in Hypertext Markup Language (HTML). The programs can be in a number of computer languages including Java, Visual Basic, Perl, PHP, Python, and more.

Hypertext Markup Language (HTML) was developed by Tim Berners-Lee in 1992
 along with his invention of Hypertext Transfer Protocol (HTTP). Together HTML and HTTP created the World Wide Web. Originally the web was designed to display hypertext
 documents, i.e. documents containing links to other web pages. Consequently HTTP was designed for rapid ‘hops’ from one web page to another.
Because web users were expected to remain a relatively brief time on any one page, HTTP does not maintain a connection for more than a quick page request and server response. It is said to be ‘stateless’. That means that the server does not store information about recent requests. This works very well for web surfing, but it is a problem for web applications that have to track users doing business on a site.

This document will consider ways to create and manage a web application written using Java servlets and Java Server Pages (JSP). We will see how to get a request from the client, process it by either accessing or modifying a database, and then create a response to send back to the client. Setup information for Java, the Apache Tomcat server, and the JCreator IDE (Integrated Development Environment) can be found in an Appendix.
The Client’s Web Page
There are many objects that can be placed on a web page, but the only one of interest for web programming is that of a form. A form is used to collect information from the client and submit it to the server for processing. It contains an action attribute that tells the server what program to use to process the data and a method attribute that shows which method in the program should be called. An example of an action attribute is action="http://localhost:8080/servlet/client-server.EmailServlet/".

The form can collect data in a number of different ways, but the first one we will consider is that of a text box. A text box provides a box on the screen that accepts text input. Whatever the user types into the box can then be submitted to the server by clicking a button.

An example of an HTML page containing a single form is shown below.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>E-Mail Form</title></head>

<body>

<h3>Enter your name and e-mail address.

Then click the Send button to send the data to the server.</h3>

<form method = "get" action="http://localhost:8080/servlet/echo.EmailServlet">

<p><input type = "text" name = "name" value = "" size = 30 /> Name </p>

<p><input type = "text" name = "email" value = "" size = 30 /> E-Mail Address </p>

<p><input type= "submit" value="Send" /></p>

</form>

</body> </html>
The first line, <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">, is a declaration
 that should begin web pages. There are three types of declarations, Transitional, Strict, and Frameset. Strict pages must use Cascading Style Sheets
 (CSS) for all layout information. Transitional pages may still have some tags with styles, such as <body bgcolor="blue">. The Frameset declaration is for all pages that contain a frameset.
The form contains a method attribute, method = "get", and an action attribute,

action="http://localhost:8080/servlet/echo.EmailServlet"
The method attribute tells the server what method to run in the Java servlet given by the action attribute. The method, get, means that the server is to run the doGet method in the servlet. The action attribute tells the server where to find the servlet that will do the processing.

The example action attribute says that the servlet is located on the localhost
. It is to be accessed using port 8080. The name, servlet, in the path tells the server to look in its webapps/ROOT directory. All servlet classes are stored in the classes folder under that folder, but in addition, this servlet is in a package called echo. Finally the name of the servlet is EmailServlet.

The form also contains two text boxes, one called name and the other called email. They are initially empty and have space for 30 characters. The names used for the text boxes must agree exactly with the parameters used in the servlet. Case differences between the form and servlet are a common cause of error. Finally the form has a button with the caption Send. It is used to submit the data in the form to the server.
When the user clicks the submit button, the browser creates a URL string that looks like the following:

http://localhost:8080/servlet/echo.EmailServlet?name=Alice+Lee&email=alee@aol.com
The section that precedes the question mark (?) is taken directly from the action attribute. The rest of the string consists of the data typed in by the user. In this case, the user typed “Alice Lee” into the box for the name and “alee@aol.com” into the box for the email address. (Spaces are replaced by the ‘+’ sign in the string.)
The Servlet
When the form is sent to the server, the servlet named in the URL string is executed. It can request the data from the client and then formulate and send a response. A servlet is a subclass of the abstract class, HttpServlet.
 HttpServlet is contained in the Java packages javax.servlet and javax.servlet.http. These both must be imported into the program. They can be found in an archive called servlet.jar.

HttpServlet has several methods that can be over-ridden. The two most important ones are doGet and doPost. They both have the same parameters, HttpServletRequest and HttpServletResponse. The first of these is used to get the request from the client’s form. The second is used to return a response to the client. The methods, doGet and doPost, throw an IOException and a ServletException. These exceptions must either by caught or re-thrown.
The servlet has to create a response page to send back to the client. This is done using a PrintWriter object. Some of the HTML required is standard and is used in every web page. These lines have been separated out into two methods, createHeader and createFooter. They can either be added to any servlet or put into a separate class. An example of a servlet to echo back the email data is shown below.
package echo;

/* EmailServlet processes a request from a web page. It responds to the request by echoing back the name and email address that was sent in. */

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class EmailServlet extends HttpServlet

{

protected void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

// Set the content type for the output and then get a PrintWriter object.

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

// Get the form data from the request.

String name = request.getParameter ("name");

String email = request.getParameter ("email");

// Write the output header, the output data, and the footer.

createHeader (out, "Test Data");

out.println ("<h3>Hello.</h3>");

out.println ("<h3>" + name+ "</h3>");

out.println ("<h3>Your email address is " + email + "</h3>");

createFooter (out);

}catch (IOException e) {System.out.println ("Servlet Exception");}

} // doGet

// createHeader adds standard HTML lines to the beginning of the output page.

protected void createHeader (PrintWriter out, String title)

{

out.println ("<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'>");

out.println ("<html>");

out.println ("<head>");

out.println ("<title>" + title + "</title>");

out.println ("</head>");

out.println ("<body>");

} // createHeader

// createFooter adds standard HTML lines to the end of the output page.

protected void createFooter (PrintWriter out){out.println ("</body></html>");}

} // EmailServlet
The Web Application Deployment Descriptor

The Web Application Deployment Descriptor, web.xml, is an XML
 document that tells the server where to find the servlets mentioned in the action attributes in HTML forms. Various versions of web.xml come with Apache Tomcat. They are already stored in the directory, ROOT/WEB-INF. However, the simplest one that works is the following:
<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app>

<servlet>

<servlet-name>EmailServlet</servlet-name>

<servlet-class>echo.EmailServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>EmailServlet</servlet-name>

<url-pattern>/servlet/echo.EmailServlet</url-pattern>

</servlet-mapping>
</web-app>
The <servlet> tag gives the name of the servlet and its class file. The <servlet-mapping> tag provides a short pattern that can be used to find the class file. For example, instead of

< url-pattern>/servlet/echo.EmailServlet</url-pattern>
we could have

< url-pattern>/servlet/email</url-pattern>.

We would also have to change the action attribute in the form to

action="http://localhost:8080/servlet/email"
The Web Application Deployment Descriptor will be discussed in more detail later.

The three files are stored in separate locations in the Tomcat directory structure.
 The HTML file should be placed in the ROOT directory, the web.xml file in the WEB-INF folder, and the servlet in the classes folder. Once the servlet has been compiled, its class file will be deployed into a subfolder called echo.
At this point you can start the server and run the application. The server is started using startup.bat found in the bin folder. The HTML form is accessed using a web browser such as Internet Explorer or Firefox. Type http://localhost:8080/EmailForm.html into the browser window. When the form is displayed, fill it out and click the Send button. You should see the following response from the server.

[image: image1.png]=lo/x|

¢ 5 80Q0HE

Google Searchi ask ... || Index of jowolfjdo. »
Googl .. | & Thee... | Dwashin.. || Test |n
Hello.
Alice Lee

Your email address is alee@aol.com

Finding an Email Address in a Database
Echoing the input is not very interesting. A more useful application gets the email address from a database given the name. An Access database that stores names, email addresses, and telephone numbers is shown below.

[image: image9.emf]

To connect to the database, we have to get a jdbc-odbc driver. This is done using the Java code
Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

Then the program creates a SQL (Structured Query Language) statement, queries the database, and gets a ResultSet. If the ResultSet is not empty, it will contain the address. In order to use SQL, we have to import java.sql into the program. There are also several exceptions that must be caught or re-thrown.

A web application involves three parts, the HTML file, the Java servlet, and the deployment descriptor. Examples for finding an email address given a name follow. The HTML file, FindEmail.html, comes first.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>E-Mail Form</title></head>

<body>

<h3>Enter a name to find an email address.</h3>

<form method = "get" action="http://localhost:8080/servlet/find">

<p><input type = "text" name = "name" value = "" size = 30 /> Name </p>

<p><input type= "submit" value="Send" /></p>

</form>

</body> </html>

Next we have the Java servlet, FindEmail.java. It uses a class called Page. This class contains the methods createHeader and createFooter used before. It can either be stored in the same file as the servlet or in a separate file. If it is stored separately, it should be made public.
package address_book;

/* EmailServlet processes a request from a web page. It responds to the request by echoing back the name and email address that was sent in. */

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

public class FindEmail extends HttpServlet

{

protected void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

// Get a jdbc-odbc bridge and connect to addresses.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

// Set the content type, get a PrintWriter object, and write the header.

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

Page.createHeader (out, "Address Book");

// Get the name parameter from the HTML form.

String name = request.getParameter ("name");

/* Create a statement and execute the query. Since the parameter, name, is a string, it must

be enclosed in quotation marks. */

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable Where Name = '" + name + "'";

// Execute the query and return a ResultSet.

ResultSet rs = stmt.executeQuery (query);

// If the ResultSet is not empty, get the email address and write it to the output page.

if (rs.next ())

{

String email = rs.getString ("Email");

out.println ("<h3>The email address for " + name + " is " + email + "</h3>");

}

else out.println ("<h3>The name was not found in the database.</h3>");

Page.createFooter (out);

} catch (ClassNotFoundException e){System.out.println ("Class Not Found Exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

 catch (IOException e) {System.out.println ("IO Exception");}

} // doGet

} // FindEmail

// The Page class contains standard lines needed for the HTML output page.

class Page

{

public static void createHeader (PrintWriter out, String title)

{

out.println ("<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'>");

out.println ("<html>");

out.println ("<head>");

out.println ("<title>" + title + "</title>");

out.println ("</head>");

out.println ("<body>");

} // createHeader

public static void createFooter (PrintWriter out){out.println ("</body></html>");}

} // class Page
Lastly, we have to add the new servlet into web.xml. In the HTML form, the action attribute was

action="http://localhost:8080/servlet/find"
This means that the url pattern to use is /servlet/find. The new lines to be added to web.xml are shown below.

<servlet>

<servlet-name>FindEmail</servlet-name>

<servlet-class>address_book.FindEmail</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>FindEmail</servlet-name>

<url-pattern>/servlet/find</url-pattern>

</servlet-mapping>
Creating a Self-Contained Web Application
Web applications are not usually stored in the ROOT directory of Tomcat. Instead, they are contained in a separate subfolder of webapps. A simple example would be for the preceding address book application. It can be stored in a folder called addresses with subfolders WEB-INF and classes.
[image: image2.png]T ———, |

| @search [RyFoiters 3| B

GBack v = -

Address

Folders

addressesv| (PG | Norton antirus 1l -
x | [tame -

Clogs Cwes v

L1 server B
1 shared Bnotfound

e
3 webapps

501 dasses
L adess_bock
L1 balancer

This application has a welcome page called index.html. If http://localhost:8080/addresses/ is typed into the browser, the deployment descriptor will send it to index.html. It also has an error page called notfound.html. It will come up when the server returns a 404 code. This code means that the requested page was not found.

The index page can contain several forms. The action attributes in them now look like

action="../addresses/display" and

action="../addresses/ find"
This tells the server to start at webapps/addresses. Then it is to use web.xml to find the servlets for find and display. The index file follows.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>E-Mail Form</title></head>

<body>

<h3>Click on the Send button to see all the address.</h3>

<form method = "get" action="../addresses/display">

<p><input type= "submit" value="Send" /></p>

</form>

<h3>Enter a name to find an email address.</h3>

<form method = "get" action="../addresses/find">

<p><input type = "text" name = "name" value = "" size = 30 /> Name </p>

<p><input type= "submit" value="Send" /></p>

</form>

</body> </html>
As you can see, we have dropped most of the URL in the action attribute and have just left the most important information. Now we have "../addresses/find", which gives a location relative to the location of the index page rather than a full URL.
There are a number of useful things that can be put into the deployment descriptor. Many are optional, as you saw from the stripped down version above. We can start with a display name to be used by management tools.

<display-name>Address Book Application</display-name>
Next can come a description of the application.

<description>

An application that manages and address book.

</description>
Context parameters are sometimes useful. The example here just provides author information.

<context-param>

<param-name>Author</param-name>

<param-value>Carol Wolf</param-value>

<description>Pace University</description>

</context-param>
We have already seen how to include tags showing the servlet names and mappings.

<servlet>

<servlet-name>DisplayAddresses</servlet-name>

<servlet-class>address_book.DisplayAddresses</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>DisplayAddresses</servlet-name>

<url-pattern>/display</url-pattern>

</servlet-mapping>
An important feature is the welcome file list. This can show just one welcome page or several. If there is more than one, the server tries to open them in order. So if the first is not available, it tries the second, and so on.

<welcome-file-list>

<welcome-file>index.html</welcome-file>

</welcome-file-list>

Another useful feature is a list of error pages. The only one shown here is the one for code 404, file not found.

<error-page>

<error-code>404</error-code>

<location>/notfound.html</location>

</error-page>
XML files must be well-formed.
 That is they must adhere to all XML rules. They can also be valid. This means that the document follows the description in either a Document Type Definition (DTD) or a Schema. Earlier versions of Tomcat used DTDs, but version 5.5.7 uses Schema. The example of web.xml below uses the declaration for Tomcat’s Schema. In a future section we will see how to use the deployment descriptor for restricting access to some servlets.
<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

version="2.4">

<!-- application display name -->

<display-name>Address Book Application</display-name>

<!-- application description -->

<description>

An application that manages and address book.

</description>

<!-- context parameters -->

<context-param>

<param-name>Author</param-name>

<param-value>Carol Wolf</param-value>

<description>Pace University</description>

</context-param>

<!-- servlet mappings start -->

<servlet>

<servlet-name>DisplayAddresses</servlet-name>

<servlet-class>address_book.DisplayAddresses</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>DisplayAddresses</servlet-name>

<url-pattern>/display</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>FindEmail</servlet-name>

<servlet-class>address_book.FindEmail</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>FindEmail</servlet-name>

<url-pattern>/find</url-pattern>

</servlet-mapping>

<!-- servlet mappings end -->

<!-- welcome file list -->

<welcome-file-list>

<welcome-file>index.html</welcome-file>

</welcome-file-list>

<!-- error page list -->

<error-page>

<error-code>404</error-code>

<location>/notfound.html</location>

</error-page>
</web-app>

Java Server Pages and Java Beans
Java server pages (JSP) and Java beans
 work together to create a web application. Java server pages are html pages that also contain regular Java code. This code is included between special tags that begin with ‘<%’. Java beans are Java programs that follow some specific rules. Together they make up part of a web application.

There are advantages and disadvantages to using Java server pages and beans. The main advantage is that the JSP contains the HTML code and not the bean. This keeps the Java bean ‘clean’. The disadvantage is that there are a number of conventions for Java server pages that must be followed.
Java server pages are a combination of HTML and Java code. They have to be translated into a Java servlet, which is then compiled, before they can be accessed. This is done the first time that a page is requested. After that, the compiled code resides on the server and can be used as is by any succeeding requests. On a stand-alone system, you can find both the servlet and the class file in the folder work/Catalina/localhost/_. Later we will see how to include these within the application folder itself.
Java Server Pages

In a JSP file the Java code is contained between tags that begin with <% and end with %>. These tags are also used in active server pages (asp). There are several different kinds of JSP tags depending upon their use.

· <%= … %> is used for expressions.

· <%! … %> is used for declarations.

· <% … %> is used for straight Java code.

· <%@ … %> is used to include another file such as an HTML file or a package such as java.sql.*.

There are some reserved words that are used by JSP files without further definition. These should be familiar from similar terms used with Java servlets.

· request – an instance of HttpServletRequest.

· response – an instance of HttpServletResponse.

· out – a PrintWriter object for the response.

· session – the HttpSession object associated with the session.

· application – an instance of ServletContext

Java Beans
Java beans are regular Java programs with several specific restrictions. The constructor may not have any parameters, and the variables all have get and set accessor and mutator methods. The Java server page uses the accessor and mutator methods of the bean to send values to the bean and to get resulting data back from the bean.

In a Java bean, you can instantiate other classes, access databases, create lists, tables, and anything else you might want to do. You can also have methods that receive request data from the JSP file. They have the usual request parameter as in the following example:

public void processRequest (HttpServletRequest request) { … }

Java server pages are usually in the root folder, while class files go in the same classes folder as the servlet classes.
Simple Hello Example
The first example uses a JSP file called hello.jsp, an HTML file called hello.html, and a Java bean called HelloBean.java. The HTML file has a form that sends request data to the JSP file. The JSP file in turn sends the data on to the bean. The bean uses its mutator methods (sets) to receive the data. The bean then stores the data in its instance variables and returns the data to the JSP file using its accessor methods (gets).

The following shows the HTML file and the way it is displayed in a browser.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>Hello</title></head>

<body>

<h3>Enter your name and email address: </h3>

<form method="get" action="hello.jsp">

<p><input type="text" name="name" value="" size="20"/> Name </p>

<p><input type="text" name="email" value="" size="20"/> Email </p>

<p><input type="submit" name="Send" value="Send"/> </p>

</form>

</body></html>
[image: image3.png]EBack - D - () & | @search Gigravorites

Address [&) httpyfocabost a0sjaddressesihe x| (@G0 | Liks

Google~ [| Worton antirus 11 -

Enter your name and email address:

[Aicelee ™ tame
[elee@ecicom — Emai

[@pore [[[t

I |
P

The JSP file comes next. It could be made simpler, but as it is, it demonstrates some JSP tags. The first one is used for a declaration, here for two strings, name and email. This is followed by the line that tells the server where to find the bean. This is done with tags that follow XML syntax. They are case sensitive and must have closing tags or a closing ‘/’.

<jsp:useBean id="hello" scope="session" class="greetings.HelloBean" />

This says that the bean is called HelloBean and it is in the package, greetings. The id is used throughout the JSP file to name this particular bean.

The request data from the HTML file uses standard servlet code (JSP files are translated into servlets).

<jsp:setProperty name="hello" property="name" value='<%= request.getParameter ("name") %>'/>

<jsp:setProperty name="hello" property="email" value='<%= request.getParameter ("email") %>'/>

The name, hello, refers to the bean. These say to set the bean properties, name and email. The property names must be the same as those in the bean, and the parameter names must agree exactly with those in the HTML file.
The rest of the JSP file just echoes the data back to the browser. It supplies the HTML code for the output page.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>Hello JSP</title></head>

<body>

<%! String name, email; %>

<jsp:useBean id="hello" scope="session" class="greetings.HelloBean" />

<jsp:setProperty name="hello" property="name" value='<%= request.getParameter ("name") %>'/>

<jsp:setProperty name="hello" property="email" value='<%= request.getParameter ("email") %>'/>

<%

name = hello.getName();

email = hello.getEmail();

out.println ("<h3>Hello, your name is " + name);

out.println (" and your email address is " + email + ".</h3>");

%>

</body></html>
The result looks like the following in the browser.

[image: image4.png]=10l x|
|
ok - = - D [4| Qewch (ilravoss Gveds 3| B b =] D

Address [] httpflocahost 2080 addressesihelo. sprname=Aice +Leetemal=ale@anl comtsend=5v| (PG | Lks
Google- [1| Gosearchweb - | B | PRk Bu16o01 | orton arais 13 +

Hello, your name is Alice Lee and your email address is alee@aol.com.

|
[@pore [[[t 7

Finally the bean for this example is very simple. It just stores the data using its mutator methods and returns it using the accessor methods. It does not have a constructor or any methods other than the gets and sets. A more realistic example would do something with the data before returning it.
public class HelloBean

{

private String name = "";

private String email = "";

public String getName() {return name;}

public String getEmail() {return email;}

public void setName (String n) {name = n;}

public void setEmail (String e) {email = e;}

} // HelloBean

Naming for the variables and get and set methods is determined by rules for JSP and cannot be changed. The variables must all begin with lower case letters. In the accessor and mutator methods, the get/set must be followed by an upper case letter, as in the example. If the variable contains upper case letters further on, they are to be included as is. For example, if the variable was called eMail, the accessor method for it would be getEMail (). Similarly if a variable is called firstName, the accessor method would be getFirstName (). Not following this convention is a common source of error.

Example for Finding an Address
A somewhat more realistic example uses the name in the form to find the address in a database. The form is now even simpler, since it only contains the name.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head><title>Find Address</title></head>

<body>

<h3>Enter the name : </h3>

<form method="get" action="find.jsp">

<input type="text" name="name" value="" size="20" /> Name

<p><input type="submit" name="action" value="Send" /> </p>

</form>

</body></html>
The JSP file, on the other hand, is more complicated. The line

<jsp:useBean id="findBean" scope="session" class="address_book.FindBean" />

is similar to the one for the hello example. However, the line

<jsp:setProperty name="findBean" property="*" />
is not. It provides a shorthand method for storing data in the bean’s instance variables. By using property="*", all the data in the HTML form is sent directly to the bean. If you use this, be very careful that the parameters in the HTML form are exactly the same as the instance variables in the bean. Case here is important. If you have name="Name" in the form, but String name; in the bean, the parameter will not be stored in the bean properly.

The if-else statement is also a problem. The Java code must be carefully separated from the HTML code. Getting all the tags in the right place is tricky. All Java code blocks must be included in curly braces ({}) whether or not his is required by Java. Look carefully at the example below to see how they should be arranged.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title> Find Address JSP</title></head>

<body>

<jsp:useBean id="findBean" scope="session" class="address_book.FindBean" />

<jsp:setProperty name="findBean" property="*" />

<% findBean.processRequest(); %>

<% if (findBean.getFound ()) {%>

<h4>The requested address:

<% out.println (findBean.getName()); %>

<% out.println (findBean.getEmail()); %>

<% out.println (findBean.getTelephone()); %>

</h4>

<%} else { %>

<h4>The name was not in the database.</h4>
<% } %>

</body></html>
If the name is in the database, the output of the JSP file looks like that below.

[image: image5.png]ZiFind Address 15P. - Microsom [=] 5

File Edit View Favorites 1%
cui-s-@@ A7
ot [B =] 6o [nks 7|
Googe-[I”

Norton Ankivrus

The requested address:
Alice Lee
alee@aol.com
123-45-6789

|
- T —

Next is the code for the bean, FindBean.java. It contains a method called processRequest () that connects to the database and finds the address. This part is the same as with the similar servlet.

package address_book;

import java.sql.*;

// FindBean is a Java bean that is used to locate an address in a database.
public class FindBean

{

private String name, email, telephone;

private boolean found;

// The accessor methods.

public String getName() {return name;}

public String getEmail () {return email;}

public String getTelephone () {return telephone;}

public boolean getFound () {return found;}

// The only mutator method needed.

public void setName (String n) {name = n;}

/* processRequest connects to the database, gets a ResultSet, and stores the data in the instance variables. */

public void processRequest ()

{

try

{

// Get a jdbc-odbc bridge and connect to addresses.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:addresses");

// Create a query and get a ResultSet.

Statement stmt = con.createStatement ();

String query = "Select * From AddressTable Where Name = '" + name + "'";

ResultSet rs = stmt.executeQuery (query);

// If the name is in the database, store the address in the instance variables.

if (rs.next ())

{

name = rs.getString ("Name");

email = rs.getString ("Email");

telephone = rs.getString ("Telephone");

found = true;

}

// If the address was not found, set the value of the variable found to false.

else found = false;

} catch (ClassNotFoundException e){System.out.println ("Class Not Found Exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

} // processRequest

} // FindBean
The servlet derived from the JSP file, find.jsp, and its compiled version, are stored in work/Catalina/localhost/org/apache/jsp. They are find_jsp.java and find_jsp.class. We can include them in the application by copying the org/apache/jsp folder to the classes folder.

[image: image6]
The files in this folder are either servlets or class files. They can now be included in the web application deployment descriptor, web.xml. The lines to add are:

<!-- Define the jsp servlets. -->

<servlet>

<servlet-name>org.apache.jsp.find_jsp</servlet-name>

<servlet-class>org.apache.jsp.find_jsp</servlet-class>

</servlet>

and

<!-- Define the jsp mappings. -->

<servlet-mapping>

<servlet-name>org.apache.jsp.find_jsp</servlet-name>

<url-pattern>/find/*</url-pattern>

</servlet-mapping>
The mapping definition, <url-pattern>/find/*</url-pattern>, can now be used in the index page in the usual way. The following form asks for a name and sends the data to the server. The servlet, find_jsp, then executes and returns a response to the browser.

<h3>Enter a name to find an email address.</h3>

<form method = "get" action="../addresses/find">

<p><input type = "text" name = "name" value = "" size = 30 /> Name </p>

<p><input type= "submit" value="Send" /></p>

</form>

Grocery Store Database
A different example is that of a grocery store. To begin with, the store stocks only a few kinds of fruit. A table is shown below.
[image: image10.emf]

The table is called fruit, and it has four fields, id, name, quantity, and price. Id and name are both strings, quantity is an integer, and price is a double.

It is stored in a database called grocery. There can also be tables for vegetables, dairy, customers, and employees. We will see some of these other tables later.

We can make changes in the database using a SQL update statement. If we want to change both the quantity and the price for some fruit, we can use the following SQL statement.

String update = "Update fruit Set quantity = " + quantity

+ ", price = " + price + " Where id = '" + id + "'";
The variables, quantity and price, are numeric, so they are not surrounded by quotation marks. However, id is a string, so it has to have the single quotes inside of the double quotes.

The general form
 of the update statement is

"Update table Set Field1 = parameter1, Field2 = parameter2 Where Key = key"

An HTML file that can be used to get the data follows. A more complete form would ask the client to confirm the new data.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>Grocery Store</title></head>

<body>

<h3>Change Quantity and Price</h3>

<form method = "get" action="change.jsp">

<input name="id" type="text" value = "" size = "10" /> Product ID

<input name="quantity" type="text" value="" size="10" /> New Quantity

<input name="price" type="text" value = "" size = "10" /> New Price

<p><input type="submit" value="Change Quantity and Price" /></p>

</form>

</body></html>
The JSP file is a lot like the one for finding an address.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title> Change Quantity and Price JSP. </title></head>

<body>

<jsp:useBean id="changeBean" scope="session" class="grocery.ChangeBean" />

<jsp:setProperty name="changeBean" property="*" />

<% changeBean.processRequest(); %>

<% if (changeBean.getSuccess () > 0)

{ %>

<h4>The changed values are:

<p>Id: <% out.print (changeBean.getId()); %>

Name: <% out.print (changeBean.getName()); %>

Quantity: <% out.print (changeBean.getQuantity()); %>

Price: <% out.println (changeBean.getPrice()); %></p></h4>

<% } else { %>

<h4>The Id was not in the database.</h4>

<% } %>

</body></html>
The Java bean first connects to the database and then updates the data. If the update is successful, the method, executeUpdate, will return a value greater than 0. If the update fails, the value will be 0.

package grocery;

import java.sql.*;

import java.io.*;

//
ChangeBean finds a specific product and changes the quantity and price.

public class ChangeBean

{

private String id, name;

private int quantity, success;

private double price;

// The accessor methods.

public String getId() {return id;}

public String getName() {return name;}

public int getQuantity() {return quantity;}

public double getPrice() {return price;}

public int getSuccess () {return success;}

// The mutator methods.

public void setId (String i) {id = i;}

public void setQuantity (int q) {quantity = q;}

public void setPrice (double p) {price = p;}

// processRequest connects to the database and them executes the update.

public void processRequest ()

{

try

{

// Get a jdbc-odbc bridge and connect to the grocery database.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Create an update statement. If the update succeeds, the value of success will be positive.

Statement stmt = con.createStatement ();

String update = "Update fruit Set quantity = " + quantity

+ ", price = " + price + " Where id = '" + id + "'";

success = stmt.executeUpdate (update);

/* If the update is successful, get the data from the database and store it in the instance variables. */

if (success > 0)

{

stmt = con.createStatement ();

String query = "Select * From fruit Where ID = '" + id + "'";

ResultSet rs = stmt.executeQuery (query);

rs.next ();

id = rs.getString ("id");

name = rs.getString ("name");

quantity = rs.getInt ("quantity");

price = rs.getDouble ("price");

}

stmt.close ();

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.");}

 catch (SQLException e){System.out.println ("SQL Exception");}

}

} // class ChangeBean

Adding Security to an Application
Some applications are just used by their developers, but others are made available to a number of clients. These people may either be in the same company or somewhere on the Internet. For these applications, it is often useful to have levels of access or at least a login involving a username and password.

There are several ways to handle this. The best method is to develop a custom login and use encryption, such as Secure Socket Layer (SSL). Here usernames and passwords are kept in a secure database with encryption. And they are sent over a secure network. This level of security is necessary for financial sites such as banks and brokerage houses.

Other sites require security only when final ordering information, including credit card numbers, is gathered. Up until that point, shoppers or other visitors are free to investigate the site. Some also have registration and login requirements for visitors. These are also usually custom designed.

But a web application can also have levels of security so that, for example, managers could have greater access to web pages than clerks. This can be built into the application using web.xml, the web application deployment descriptor. The Tomcat server can have roles assigned to different users so that a manager’s role would have greater access than a clerk’s role.

tomcat-users.xml

The file, tomcat-users.xml, is contained in the conf folder of Apache Tomcat. It allows the manager of the server to set up roles for clients.
<?xml version='1.0' encoding='utf-8'?>

<tomcat-users>

<user username="tomcat" password="tomcat" roles="tomcat"/>

<user username="role1" password="tomcat" roles="role1"/>

<user username="both" password="tomcat" roles="tomcat,role1"/>

</tomcat-users>

This file can be edited to create other roles besides the examples provided. For example, there can be a store_manager role and a store_clerk role.

<?xml version='1.0' encoding='utf-8'?>

<tomcat-users>

<user username="tomcat" password="tomcat" roles="tomcat"/>

<user username="role1" password="tomcat" roles="role1"/>

<user username="both" password="tomcat" roles="tomcat,role1"/>

<user username="Alice Lee" password="alee" roles="store_manager"/>

<user username="Diana Chen" password="dchen" roles="store_clerk"/>

</tomcat-users>

This gives Alice Lee the role of store manager with the password "alee" and Diana Chen the role of store clerk with the password "dchen". Special code in servlets can make a distinction between the two and, for example, give permission to the manager to make changes to the database but not to the clerk.
Including JSP files in web.xml

Using the web application deployment descriptor and security constraints with Tomcat 5.5 is somewhat complicated. It is best done with Java server pages and not servlets. JSP files are compiled into servlets when they are first executed, and the resulting servlet classes can be placed into the deployment descriptor. Note that Java beans and Java server pages by themselves do not belong in web.xml, since they are not servlets.
As described for the address example above, after the JSP file has been translated into a servlet and compiled, the code can be copied to the classes folder. Once that is done, the deployment descriptor can be modified to include definitions and mappings for these servlets. They cannot be included, however, until they are finished, compiled, and tested. In the example above that changes the price and quantity of a product, files will be org.apache.jsp.change_jsp.java and org.apache.jsp.change_jsp.class. So the lines to add in web.xml are

<servlet>

<servlet-name>org.apache.jsp.change_jsp</servlet-name>

<servlet-class>org.apache.jsp.change_jsp</servlet-class>

</servlet>

and

<servlet-mapping>

<servlet-name>org.apache.jsp.change_jsp</servlet-name>

<url-pattern>/change/*</url-pattern>

</servlet-mapping>
The login.jsp and error.jsp files

In the jsp examples folder included with Tomcat 5.5, there are three files in the subfolder security/protected. They are error.jsp, index.jsp, and login.jsp. We need the first and the last. The error file is used to direct the user back to the login page when an incorrect username and password have been entered. The index file is just an example, but the login file is very useful.

There are two kinds of login configurations, FORM and BASIC. The file, login.jsp, uses FORM authentication. That means that the application provides a login form. This is the most useful, since with this the form can be designed by the developer. If you use BASIC authentication, Tomcat provides a form for you.

The names used in FORM authentication are defined by the server. The action value must be j_security_check, the username, j_username, and the password, j_password. A slightly modified version of the form in the Tomcat examples is:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<link rel='stylesheet' type='text/css' href='grocerystyles.css' />

<html>

<head><title>Login Page for Grocery Store</title></head>
<body>

<form method="post" action='<%= response.encodeURL("j_security_check") %>' >

<p>Username <input type="text" name="j_username">

Password <input type="password" name="j_password"></p>

<p><input type="submit" value="Log In">

<input type="reset"></p>

</form>

</body></html>

Note that the method is post and the action statement encodes the session ID in the URL for the response. The resulting login form is shown below, after Alice Lee has entered her username and password, but before she has clicked on the Submit button.

[image: image7]
The code for the error page also uses URL encoding. All it does is redirect the user back to the login page.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<link rel='stylesheet' type='text/css' href='grocerystyles.css' />

<html>

<head><title>Error Page For Examples</title></head>

<body>

<h3>Invalid username and/or password, please try

<a href='<%= response.encodeURL("login.jsp") %>'> again.</h3>

</body>

</html>
Once these pages have been executed and tested, the compiled code can be copied to org.apache.jsp and the following lines added to web.xml:

<servlet>

<servlet-name>org.apache.jsp.login_jsp</servlet-name>

<servlet-class>org.apache.jsp.login_jsp</servlet-class>

</servlet>

<servlet>

<servlet-name>org.apache.jsp.error_jsp</servlet-name>

<servlet-class>org.apache.jsp.error_jsp</servlet-class>

</servlet>
and

<servlet-mapping>

<servlet-name>org.apache.jsp.login_jsp</servlet-name>

<url-pattern>/login.jsp</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>org.apache.jsp.error_jsp</servlet-name>

<url-pattern>/error.jsp</url-pattern>

</servlet-mapping>
After this, the actual JSP files can be removed from the main application folder and stored elsewhere.
The security constraints in web.xml

Lines can be added directly to web.xml that define the privileges of tomcat users. The additions to tomcat-users.xml in the conf folder give a store manager role to Alice Lee and a store clerk role to Diana Chen. These follow.
<!-- Define the security constraints for this application -->

<security-constraint>

<web-resource-collection>

<web-resource-name>Grocery Manager Application</web-resource-name>

<description>Protects change.jsp</description>

<url-pattern>/change/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>store_manager</role-name>

<role-name>store_clerk</role-name>

</auth-constraint>

</security-constraint>
<!-- Define the security roles for this application -->

<security-role>

<role-name>store_manager</role-name>

</security-role>

<security-role>

<role-name>store_clerk</role-name>

</security-role>

<!-- Define the login configuration for this application -->

<login-config>

<auth-method>FORM</auth-method>

<realm-name>Grocery Manager Application</realm-name>

<form-login-config>

<form-login-page>/login.jsp</form-login-page>

<form-error-page>/error.jsp</form-error-page>

</form-login-config>

</login-config>

As mentioned before, Tomcat will provide its own form if web.xml contains the following:

<login-config>

<auth-method>BASIC</auth-method>

<realm-name> Grocery Manager Application </realm-name>

</login-config>
Using this gives you less control over the appearance of the page. Both forms encrypt the username and password, but the encryption is very weak.

A separate page for the manager
The discussion above applied to a single JSP file, change.jsp. But it is more likely that protection would be provided for a full manager page and set of servlets or Java server pages. Again it is best to do this with a JSP file rather than an HTML file. However, the following example is really just HTML saved as JSP.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<link rel='stylesheet' type='text/css' href='grocerystyles.css' />

<html>

<head><title>Grocery Form</title></head>

<body>

<form method="post" action="../grocery/display">

<p><input type="submit" value="Display" /></p>

</form>

<hr/>

<form method="post" action="../grocery/find">

<p><input type="text" name="name" value =""size="20" /> Name </p>

<p><input type="submit" value="Find" /></p>

</form>

<hr/>

<form method="post" action="../grocery/delete">

<p><input type="text" name="id" value="" size="20" />Product ID</p>

<p><input type="submit" value="Delete" /></p>

</form>

<hr/>

<form method="post" action="../grocery/insert">

<p><input type="text" name="id" value="" size="20" />ID </p>

<p><input type="text" name="name" value="" size="20" />Name

<p><input type="text" name="quantity" value="" size="20" />Quantity</p>

<p><input type="text" name="price" value="" size="20" />Price</p>

<p><input type="submit" value="Insert" /></p>

</form>

<hr/>

<form method="post" action="../grocery/change">

<p><input type="text" name="id" value="" size="20" />Product ID </p>

<p><input type="text" name="quantity" value="" size="20" />New Quantity</p>

<p><input type="text" name="price" value="" size="20" />New Price</p>

<p><input type="submit" value="Change" /></p>

</form>

</body> </html>
The web resource collection now becomes:

<web-resource-collection>

<web-resource-name>Grocery Manager Application</web-resource-name>

<description>Protects the Manager Servlets</description>

<url-pattern>/manage/*</url-pattern>

</web-resource-collection>

When manage.jsp is translated and compiled, it too can be placed into web.xml using:

<servlet-mapping>

<servlet-name>org.apache.jsp.manage_jsp</servlet-name>

<url-pattern>/manage/*</url-pattern>

</servlet-mapping>
and

<servlet-mapping>

<servlet-name>org.apache.jsp.manage_jsp</servlet-name>

<url-pattern>/manage/*</url-pattern>

</servlet-mapping>
Now the index page for the application can have the following form:

<form method="post" action="../grocery/manage">

<p><input type = "submit" value="Manager" /></p>

</form>
Differentiating between manager and clerk roles

In addition to the security constraint described above, web.xml allows you to designate particular servlets that will be protected. While clerks may be given permission to do a number of things, they might not be allowed to delete products. We can put a constraint in the web.xml file on the delete servlet.
<servlet>

<servlet-name>DeleteServlet</servlet-name>

<servlet-class>manager.DeleteServlet</servlet-class>

<security-role-ref>

<role-name>mgr</role-name>

<role-link>store_manager</role-link>

</security-role-ref>

<security-role-ref>

<role-name>clerk</role-name>

<role-link> store_clerk</role-link>

</security-role-ref>

</servlet>
The role-name and role-link entries allow for different names to be used in the servlet and the

<auth-constraint> entry. Here "mgr" and "clerk" will be used in the servlet while "store_manager" and "store_clerk" are used in the authentication constraint entry. The servlet can ask whether a user is in the role of a manager or a clerk. It can then differentiate between what each has permission to do. Both will be allowed to log into the manager page, but only the store manager will be able to execute the delete servlet.
The code that checks for the role is

boolean manager = request.isUserInRole ("mgr");
If the user that logged in was listed as a store manager, the transaction will be allowed. Otherwise it will not be authorized. Here "mgr" is used rather than "manager". The <role-link> tag provided this connection. The full delete servlet follows.
package manager;

import java.sql.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// The DeleteServlet allows the store manager but not the clerk to delete a product from the table.
public class DeleteServlet extends HttpServlet

{

public void doPost (HttpServletRequest request, HttpServletResponse response)

{

try

{

// Get a jdbc-odbc bridge and connect to the grocery database.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:grocery");

// Set the content type, get a PrintWriter object, and write the header.

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

MPage.createHeader (out, "Fruit List");

// This checks whether the user is authorized to make this transaction.

boolean manager = request.isUserInRole ("mgr");

if (manager)

{

// Create a query and get the ResultSet.

String keyId = request.getParameter ("id");

Statement stmt = con.createStatement ();

String query = "Delete From fruit Where id = '" + keyId + "'";

// Execute the update and check whether or not it was successful.

int success = stmt.executeUpdate (query);

if (success != 0) out.println ("<h3>Product deleted.</h3>");

else out.println ("<h3>Error in deleting product.</h3>");

stmt.close ();

}

else out.println ("<h3>You do not have authorization for this transaction.</h3>");

con.close ();

MPage.createFooter (out);

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.");}

 catch (SQLException e){System.out.println ("SQL Exception");}

 catch (IOException ex) {System.out.println ("IO Exception.");}

} // doGet

} // class DeleteServlet
Storing Usernames and Passwords in the Database
There are only a few cases where the usernames and passwords are stored in tomcat-users.xml. Most of the time, they are stored in a separate (often encrypted) database table. As an example, suppose that a club has members, who must login before they may access the site. The following shows an example in a table called Members.

[image: image8.emf]

The login can be handled by an HTML file called login.html, a JSP file called welcome.jsp, and a Java bean called VerifyBean.java. The HTML file is listed first.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>Login Page for Club</title></head>

<body>

<form method="post" action="welcome.jsp" />

<p>Username <input type="text" name="username" />

Password <input type="password" name="password" /></p>

<p><input type="submit" value="Log In" />

<input type="reset" /></p>

</form>

</body></html>
The action in the login page is a Java server page, welcome.jsp. It could be a servlet as well. Using JSP allows you to keep the bean free of HTML code. The JSP file is next.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>Welcome Page</title></head>

<body>

<jsp:useBean id="verifyBean" scope="session" class="members.VerifyBean" />

<jsp:setProperty name="verifyBean" property="*" />

<% verifyBean.processRequest(); %>

<% if (verifyBean.getVerified ())

{ %>

<h3>Welcome to Our Club

<p>List of Events</p></h3>

<p><h4>Change your password. </h4></p>

<% }
else
{ %>

<h4>Your username and/or password are not in the database.

Try again.</h4>

<% } %>

</body></html>
As usual with JSP files, you have to be very careful with opening and closing braces. Finally the Java bean accesses the database and verifies that the password entered matches that in the database. If it does, it returns the boolean variable, verified. Otherwise verified has the value false.

/* VerifyBean gets the username and password from the Java server page. It then checks to see if the password is correct. If so, it returns the value true. Otherwise, verified has the value false.

*/

package members;
import java.sql.*;

public class VerifyBean

{

public String username, password;

public boolean verified;

public boolean getVerified () {return verified;}

public void setUsername (String u) {username=u;}

public void setPassword (String p) {password=p;}

public void processRequest ()

{

try

{

// Get a jdbc-odbc bridge and connect to club.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:club");

Statement stmt = con.createStatement ();

String query = "Select * From Members Where username = '" + username + "'";

ResultSet rs = stmt.executeQuery (query);

if (rs.next () && rs.getString ("password").equals (password))

 verified = true;

else verified = false;

con.close ();

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.");}

 catch (SQLException e){System.out.println ("SQL Exception");}

} // processRequest
} // class VerifyBean
Organizations with logins usually allow members to change their passwords. This has been included in the file, welcome.jsp with the line

<p><h4>Change your password. </h4></p>
This links to an HTML file called change-password.html. This follows.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head> <title>Change Password Page</title> </head>

<body>

<h3>To change your password, type the new password followed by a confirmation.</h3>

<form method="post" action="change_password.jsp" />

<p> <input type="text" name="username" /> Username

<p> <input type="password" name="newPassword" /> New Password

 <input type="password" name="confirm" /> Confirmation</p>

<p><input type="submit" value="Change Password" />

<input type="reset" /></p>

</form>

</body> </html>
The form collects the username, the new password and a confirmation of the new password. The JSP file is called change_password.jsp.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head><title>Change Password</title></head>

<body>

<jsp:useBean id="changePassword" scope="session" class="members.ChangePassword" />

<jsp:setProperty name="changePassword" property="*" />

<% changePassword.processRequest(); %>

<% if (! changePassword.getSame ())

{ %>

<h4>Your new password does not match the confirmation.

Try again.</h4>

<% }

else

{

if (changePassword.getChanged ())

{ %>

<h4>Your password has been changed</h4>

<% }

else

{ %>

<h4>An error has occurred in changing your password.

Try again.</h4>

<% }

} %>

</body></html>

Several errors could occur here. The username could be wrong, the password and the confirmation might not match, or the password might not be correct. The Java bean checks for two of them. If the confirmation is not the same as the new password, the boolean variable, same, will be false. If the confirmation is correct, there still may be an error if the update to the database fails. Both of these are checked for in the bean.

/*
ChangeBean gets the new password and the confirmation from the Java server page. If these two match, it then updates the database with the new password. If this fails, changed is set to false. Otherwise changed is set to true. Finally the booleans are returned to the Java server page. */

package members;

import java.sql.*;

public class ChangePassword

{

public String username, newPassword, confirm;

public boolean changed, same;

public boolean getChanged () {return changed;}

public boolean getSame () {return same;}

public void setUsername (String u) {username=u;}

public void setNewPassword (String p) {newPassword=p;}

public void setConfirm (String c) {confirm=c;}

public void processRequest ()

{

try

{

// Get a jdbc-odbc bridge and connect to club.mdb.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:club");

if (newPassword.equals (confirm))

{

same = true;

Statement stmt = con.createStatement ();

String query = "Update Members Set password = '"+ newPassword

+ "' Where username = '" + username + "'";

int success = stmt.executeUpdate (query);

if (success!=0) changed = true;

else changed = false;

}

else same = false;

con.close ();

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.");}

 catch (SQLException e){System.out.println ("SQL Exception");}

} // processRequest
} // class ChangePassword
As before, the files must be listed in web.xml. The welcome-file will be login.html, and JSP files, once compiled, are listed under servlets and servlet mappings.

Session Tracking Using HttpSession
HyperText Transfer Protocol (HTTP) was not designed to aid web sites in tracking users’ activities. When a user makes a request for a browser page, the server responds to the request and then disconnects. The server can store the IP (Internet Protocol) address, but it may not be unique. Often several computers share the same IP address.

Web sites need some way besides the IP address to keep track of their visitors. This is especially true of on-line stores. Users typically put something in their shopping cart and then continue shopping on the site. And stores want to encourage this behavior. They want customers to buy a number of products when they visit.

There are two ways for web sites to track user activity. One is by depositing a cookie on the user’s hard drive, and the other is URL rewriting. There are several kinds of cookies, but the one that we will look at just puts some text into temporary storage and deletes it when finished. URL rewriting involves adding an identification number to the URL string. This is actually less safe than storing a cookie, since the string is sent unencrypted, and use of the back button on the browser can destroy it.

HttpSession
Java supplies a session object
 that implements javax.servlet.http.HttpSession. It is created by the server when a browser connects to it. It is associated with HttpServletRequest and can be accessed by a servlet using

HttpSession session = request.getSession (true);

The boolean parameter, true, is used to tell the server to use the current session if there is one, or to create a new session if no current session exists. If the parameter is omitted, the default is true.

When a session is created, a cookie containing a session ID is stored on the user’s hard drive. The name of the ID is JSESSIONID. It is a long string made up of a random sequence of letters and digits. It is probably not sufficiently random for very large web stores,
 but for smaller ones it is unlikely that two sessions would receive the same ID. If the user’s browser does not accept cookies, the server can use

String url = request.getRequestURI ();

String codedUrl = reponse.encodeURL (url);

The string, codedUrl is then added to the IP address that is used to send a web page back to the browser. Since this is shown in the browser’s window, it is not very secure.

Sessions have a life-time. They begin when the user first contacts the web-site and end when the user closes the browser. The server can terminate sessions after a given number of minutes. This information can be included in web.xml with the lines

<session-config>

<session-timeout>30</session-timeout>

</session-config>

If the time given is negative, the session will not timeout.

Cookies
When the server gets a session object, a cookie is created and stored on the user’s computer.
 The server can also create cookies and deposit them on the user’s computer. A cookie is created by

Cookie cookie = new Cookie (name, value);

where name and value are both Strings made up of ascii alphanumeric values. The following code will add a cookie to the user’s computer:

Cookie cookie = new Cookie ("Your name", "Some value such as an ID");

response.addCookie (cookie);

Unless the server specifies otherwise, the cookie will be deleted when the browser is closed. That can be changed by setting the maximum age for the cookie. The code for this is

cookie.setMaxAge (time_in_seconds);
If you wish the cookie to be available for an hour, use

cookie.setMaxAge (3600);
You can also set a comment with cookie.setComment ("This is an example of a cookie."). However, comments are not returned to the browser. The following servlet illustrates this. When testing it, make sure that you add it to web.xml.
package http_session;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

//
MakeCookie creates a cookie, stores it, and then checks for cookies on the user’s computer.
public class MakeCookie extends HttpServlet

{

protected void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

// Create a new cookie with a name and value.

Cookie cookie = new Cookie ("Pace", "Computer Science");

cookie.setComment ("This is an example of a cookie.");

cookie.setMaxAge (3600); // Set the maximum age to be an hour.

response.addCookie (cookie);

// getCookies returns an array of cookies.

Cookie [] cookies = request.getCookies ();

// Output the cookies on the computer.

Page.createHeader (out, "Cookies");

if ((cookies == null) || (cookies.length == 0))

out.println ("<h3>No Cookies Found</h3>");

else

{

out.println ("<h3>Cookies Found</h3>");

for (int count = 0; count < cookies.length; count ++)

{

out.println ("
Name: " + cookies [count].getName ());

out.println ("
Value: " + cookies [count].getValue ());

out.println ("
Comment: " + cookies [count].getComment ());

out.println ("
MaxAge: " + cookies [count].getMaxAge ());

}

}

Page.createFooter (out);

} catch (IOException ex) {System.out.println ("<h3>IO Exception.</h3>");}

} // doGet
} // MakeCookie

Session Attributes
The session object is available to all servlets in the application. Using this, session data can be passed from one servlet to another while the session is active. Data is stored as a session attribute. Attributes are maintained in a hash table. This means that you need a key (String) for each attribute. These strings can be constants in your servlets.

Once the servlet has gotten a session, it can set an attribute, such as a customer’s ID.

HttpSession session = request.getSession (true);

session.setAttribute (CustomerKey, customerId);

where CustomerKey is a constant String used throughout the application to locate the customer’s data.

Attribute data is retrieved using getAttribute (key), as follows:

String customerId = (String) session.getAttribute (CustomerKey);
Note that this hash table stores objects, so when the ID is retrieved, it must be cast to a String.

A very simple servlet illustrates this.

package http_session;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

//
SessionAttribute stores a customer’s ID in a session attribute.
public class SessionAttribute extends HttpServlet

{

static final String CustomerKey = "SessionKey";

protected void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

HttpSession session = request.getSession (true);

String sessionId = session.getId ();

// In this example, the customer’s id is just the first 6 characters of the session id.

String customerId = sessionId.substring (0, 6);

session.setAttribute (CustomerKey, customerId);

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

Page.createHeader (out, "Session Attributes");

out.println

("<h3>Customer ID: " + (String) session.getAttribute (CustomerKey) + "<h3>");

Page.createFooter (out);

} catch (IOException ex) {System.out.println ("<h3>IO Exception.</h3>");}

}

} // SessionAttribute
Session attributes can be used to store any object including IDs, shopping carts, customer orders, etc. There is a limit on the number, but you are unlikely to exceed it.

Shopping Carts

On-line stores use shopping carts to store customer purchases before they decide to check out. There are many ways to implement these, but probably the simplest is as a vector of items. The Item object can store information about the item ordered, such as the product’s ID, name, quantity ordered, etc. The shopping cart then maintains a vector of items. It also keeps track of the ID for the order, the customer’s ID, and the running total cost of the order.
The cart can be created and saved as a session attribute either when the customer first visits the web site or when the customer first adds an item to the cart.

// Get the shopping cart from the session or create a new one if none exists.

cart = (ShoppingCart) session.getAttribute (CartId);

if (cart == null)
 // This is the first time an item is to be added.

{

String sessionId = session.getId ();

String orderId = sessionId.substring (0, 6);

String customerId = sessionId.substring (6, 12);

cart = new ShoppingCart (orderId, customerId);

session.setAttribute (CartId, cart);

}

// Before adding an item, check to see that there is enough in stock.

if (quantityInStock >= quantity)

{

enoughStock = true;

Item item = new Item (id, name, quantity, price);

cart.addItem (item);

}

else enoughStock = false;
// The quanity in stock was insufficient.

When the customer decides to add something to the cart, it can be retrieved from the session. Since the cart is an object all that is actually stored is a reference (pointer) to the cart, so adding an item changes the contents of the cart.

ShoppingCart cart = (ShoppingCart) session.getAttribute (CartId);

Item item = new Item (productId, name, quantityOrdered, price);

cart.addItem (item);
If the customer then decides to buy the items in the cart and check out, the cart can again be retrieved from the session and the order processed.

HttpSession session = request.getSession ();

ShoppingCart cart = (ShoppingCart) session.getAttribute (CartId);
The entire example is in Appendix B.
Sharing Data among Servlets

A Java application is usually in the form of a tree, with a main class as the root. This class instantiates other classes and often sends data to them as parameters in their constructors. The instance data in the main class act as global data and can be shared by the other classes in the application. Instance data can also be made public (not recommended) or made available using get and set methods.

A web application, on the other hand, consists of a collection of web pages, servlets, and Java server pages. These ordinarily do not communicate. However, Java supplies an interface called ServletContext.
 It can be used by one servlet to store data that can be accessed by other servlets. The data is stored with a key, and any other servlet knowing that key can access it.
Storing a Database Connection
A common use is to store a database connection. Getting the driver is a slow process, so storing it in a place accessible to all servlets can save time. The ServletContext is accessed using

ServletContext application = getServletContext ();
To store something in the ServletContext, you need a key. The method call is

application.setAttribute (ConnectionKey, con);
Finally, for another servlet to access the connection, it uses a get method:

ServletContext application = getServletContext ();

Connection con = (Connection) application.getAttribute (ConnectionKey);

Note that the result must be cast (type changed) to a Connection.

An application can have a servlet just for getting the connection. It only contains an init method, since it does not interact with the browser, but only with the database and the ServletContext. The deployment descriptor should list this servlet and include <load-on-startup>1</load-on-startup>.

<servlet>

<servlet-name>ConnectionServlet</servlet-name>

<servlet-class>store.ConnectionServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>
The tag, <load-on-startup>, is used to tell the server to load (and execute) this servlet when the application is loaded.
 Thus the connection will be established before any other servlet needs to use it. Clearly, other servlets should not close the connection. That can be done by a second servlet when the application is finished.

The following is an example of a servlet that can be used to get the connection.

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

/*
The init method of the ConnectionServlet gets a database connection and stores it in the ServletContext. */

public class ConnectionServlet extends HttpServlet

{

public final String ConnectionKey = "estore.database";

public final String JDBCConnectionURL = "jdbc:odbc:estore";

public void init ()

{

Connection con = null;

try

{

// Get a jdbc-odbc bridge and connect to the database.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

con = DriverManager.getConnection (JDBCConnectionURL);

} catch (ClassNotFoundException e){System.out.println ("Class Not Found exception.\n");}

 catch (SQLException e){System.out.println ("SQL Exception");}

ServletContext application = getServletContext ();

application.setAttribute (ConnectionKey, con);

} // init

} // ConnectionServlet
A servlet that uses the ServletContext to get the connection follows:

/*
DisplayServlet gets data from a database and sends a copy

of the data to the client in a second web page.*/

package orders;

import java.sql.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/*
DisplayServlet gets the data from the database and displays it on the output page. */

public class DisplayServlet extends HttpServlet

{

public final String ConnectionKey = "estore.database";

public void doGet (HttpServletRequest request, HttpServletResponse response)

{

try

{

// Get the database connection from the ServletContext.

ServletContext application = getServletContext ();

Connection con = (Connection) application.getAttribute (ConnectionKey);

// Set the content type, get a PrintWriter object, and write the header.

response.setContentType ("text/html");

PrintWriter out = response.getWriter ();

Page.createHeader (out, "Products");

// Create a query and display the data.

Statement stmt = con.createStatement ();

String query = "Select * From products";

ResultSet rs = stmt.executeQuery (query);

// Display the title for the table.

out.println ("<h3>Products</h3>");

out.println ("<table>");

// Display the column names in the first row.

out.println ("<tr><td>id</td><td>name</td><td>quantity</td><td>price</td></tr>");

// Display all the data in the table.

while (rs.next ())

{

out.println ("<tr><td>"+rs.getString("id")+"</td>");

out.println ("<td>"+rs.getString("name")+"</td>");

out.println ("<td>"+rs.getInt("quantity")+"</td>");

out.println ("<td>"+rs.getDouble("price")+"</td></tr>");

}

out.println ("</table>");

stmt.close ();

Page.createFooter (out);

} catch (IOException ex) {System.out.println ("<h3>IO Exception.</h3>");}

catch (SQLException es) {System.out.println ("SQL Exception");}

} // doGet

} // class DisplayServlet
References

1. Susan Anderson-Freed, Weaving a Website, Prentice Hall, 2002.

2. H.M. Deitel, P.J. Deitel, and T.R. Nieto, Internet & World Wide Web, How to Program, 2nd Edition, Prentice Hall, 2002.

3. Marty Hall & Larry Brown, Core Servlets and Java Server Pages, First Edition, Sun Microsystems Press/Prentice-Hall PTR Book, 2003.

4. Elliotte Rusty Harold, Java Network Programming, O’Reilly & Associates, Inc., 2000.

5. Karl Moss, Java Servlets Developer’s Guide, McGraw-Hill/Osborne, 2002.

6. Dave Raggett , A History of HTML, Chapter 2, Addison Wesley Longman, 1998, http://www.w3.org/People/Raggett/book4/ch02.html.

7. W3Schools Online Web Tutorials, http://www.w3schools.com.

�

�

� Dave Raggett , A History of HTML, Chapter 2, Addison Wesley Longman, 1998, � HYPERLINK "http://www.w3.org/People/Raggett/book4/ch02.html" ��http://www.w3.org/People/Raggett/book4/ch02.html�.

� The term, hypertext, was coined by Ted Nelson around 1965.

� Solutions include cookies placed on the client’s computer or session IDs encoded into the URL string. Both will be discussed later.

� See the website of the W3C consortium, � HYPERLINK "http://www.w3.org/MarkUp/" ��http://www.w3.org/MarkUp/�, for further information.

� The W3C recommendations are at � HYPERLINK "http://www.w3.org/Style/CSS/" ��http://www.w3.org/Style/CSS/�.

� Localhost is the standard name given to the local loop. It has IP address 126.0.0.1.

� Documentation for HttpServlet can be found at � HYPERLINK "http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpServlet.html" ��http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpServlet.html�.

� servlet.jar does not come with Java. There is a copy on my website in � HYPERLINK "http://csis.pace.edu/~wolf/documents/" ��http://csis.pace.edu/~wolf/documents/�. See the appendix for information on how to add it to the class path in the IDE, JCreator.

� See the document, An Overview of Extensible Markup Language, in � HYPERLINK "http://csis.pace.edu/~wolf/documents/" ��http://csis.pace.edu/~wolf/documents/� for information about XML.

� See the Appendix A for more information about the file structure and file locations.

� See the document, Using Java to Manage a Database, located in � HYPERLINK "http://csis.pace.edu/~wolf/documents/" ��http://csis.pace.edu/~wolf/documents/�. Follow the directions found there to register the database driver with the operating system create and execute queries.

� See the document on Extensible Markup Language in � HYPERLINK "http://csis.pace.edu/~wolf/documents/" ��http://csis.pace.edu/~wolf/documents/� for the definitions of well-formed and valid.

� For more information about JSP and Java beans see Marty Hall & Larry Brown, Core Servlets and Java Server Pages, First Edition, Sun Microsystems Press/Prentice-Hall PTR Book, 2003.

� Case difference between the form, the JSP file, and the bean are one of the most common sources of error. The best thing to do is to keep the identifiers the same in all three places.

� See W3Schools at � HYPERLINK "http://w3schools.com" ��http://w3schools.com� for more information on SQL.

� Some of this can be found in the book by Karl Moss, Java Servlets Developer’s Guide, chapters 4 and 5, McGraw-Hill/Osborne, 2002. His discussion is for Tomcat 4, and not all of it applies to Tomcat 5.5.

� For information concerning Cascading Style Sheets, see Weaving a Website, by Susan Anderson-Freed, Prentice Hall, 2002.

� Some web stores have decided not to deal with users that have set their browsers to refuse cookies.

� In Java server pages, session is predefined.

� Web sites with heavy traffic can use GUIDs. A GUID is a Global Unique IDentifier. Generally, a GUID consists of a random number created using the time on the computer in nanoseconds and some feature of the server. In the past this was the network card MAC (Media Access Control) address. But after the Melissa worm used this to infect computers world-wide, Microsoft changed the GUID algorithm. The string, 3F2504E0 4f89 11D3 9A 0C 03 05 E8 2C 33 01, is an example of a GUID. The numbers are in hexadecimal.

� Much of the material about sessions and cookies comes from Chapter 3 in the book, Java Servlets Developer’s Guide, by Karl Moss.

� The ServletContext is always instantiated when a Java server page is compiled. It is given the name, application. Therefore do not declare the ServletContext in a JSP. Instead just use application when referring to it. This is similar to the way that JSPs handle request and response.

� The deployment descriptor does not need a servlet mapping, since it is not accessed from the browser.

PAGE
36

[image: image11.emf]

[image: image12.emf]

