Deterministic Finite Automata

Alphabets, Strings, and Languages
Transition Graphs and Tables
Some Proof Techniques
Alphabets

◆ An *alphabet* is any finite set of symbols.

◆ **Examples:**
- ASCII, Unicode,
- \{0,1\} (*binary alphabet*),
- \{a,b,c\}, \{s,o\},
- set of signals used by a protocol.
Strings

- A *string* over an alphabet Σ is a list, each element of which is a member of Σ.
 - Strings shown with no commas or quotes, e.g., abc or 01101.
- Σ^* = set of all strings over alphabet Σ.
- The *length* of a string is its number of positions.
- ϵ stands for the *empty string* (string of length 0).
Example: Strings

\[\{0,1\}^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots \} \]

Subtlety: 0 as a string, 0 as a symbol look the same.

- Context determines the type.
Languages

◆ A language is a subset of Σ^* for some alphabet Σ.

◆ Example: The set of strings of 0’s and 1’s with no two consecutive 1’s.

◆ $L = \{\varepsilon, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101, 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010, \ldots \}$

Hmm… 1 of length 0, 2 of length 1, 3, of length 2, 5 of length 3, 8 of length 4. I wonder how many of length 5?
Deterministic Finite Automata

◆ A formalism for defining languages, consisting of:

1. A finite set of *states* \((Q, \text{ typically})\).
2. An *input alphabet* \((\Sigma, \text{ typically})\).
3. A *transition function* \((\delta, \text{ typically})\).
4. A *start state* \((q_0, \text{ in } Q, \text{ typically})\).
5. A set of *final states* \((F \subseteq Q, \text{ typically})\).

◆ “Final” and “accepting” are synonyms.
The Transition Function

- Takes two arguments: a state and an input symbol.
- $\delta(q, a) =$ the state that the DFA goes to when it is in state q and input a is received.
- **Note:** always a next state – add a *dead state* if no transition (Example on next slide).
Graph Representation of DFA’s

♦ Nodes = states.
♦ Arcs represent transition function.
 ♦ Arc from state p to state q labeled by all those input symbols that have transitions from p to q.
♦ Arrow labeled “Start” to the start state.
♦ Final states indicated by double circles.
Example: Recognizing Strings Ending in “ing”
Example: Protocol for Sending Data
Example: Strings With No 11

Start

- String so far has no 11, does not end in 1.
- String so far has no 11, but ends in a single 1.
- Consecutive 1’s have been seen.

Diagram:

```
A --> B --> C
| 1  | 1  |
| 0  | 0,1|
```

Start

End

`A` to `B` with label `1`
Alternative Representation: Transition Table

- Final states starred
- Arrow for start state
- Rows = states
- Each entry is δ of the row and column.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Columns = input symbols
Convention: Strings and Symbols

- w, x, y, z are strings.
- a, b, c, ... are single input symbols.
Extended Transition Function

- We describe the effect of a string of inputs on a DFA by extending δ to a state and a string.
- **Intuition:** Extended δ is computed for state q and inputs $a_1a_2...a_n$ by following a path in the transition graph, starting at q and selecting the arcs with labels a_1, a_2, ..., a_n in turn.
Inductive Definition of Extended δ

- **Induction on length of string.**
- **Basis:** $\delta(q, \varepsilon) = q$
- **Induction:** $\delta(q,wa) = \delta(\delta(q,w),a)$
 - **Remember:** w is a string; a is an input symbol, by convention.
Example: Extended Delta

\[
\begin{array}{c|cc}
 & 0 & 1 \\
\hline
A & A & B \\
B & A & C \\
C & C & C \\
\end{array}
\]

\[
\delta(B,011) = \delta(\delta(B,01),1) = \delta(\delta(\delta(B,0),1),1) = \delta(B,1) = C
\]
Delta-hat

◆ We don’t distinguish between the given delta and the extended delta or delta-hat.

◆ The reason:

\[\delta(q, a) = \hat{\delta}(\delta(q, \varepsilon), a) = \hat{\delta}(q, a) \]
Language of a DFA

◆ Automata of all kinds define languages.
◆ If A is an automaton, L(A) is its language.
◆ For a DFA A, L(A) is the set of strings labeling paths from the start state to a final state.
◆ Formally: \(L(A) = \{w \mid \delta(q_0, w) \in F\} \)
Example: String in a Language

String 101 is in the language of the DFA below. Start at A.
Example: String in a Language

String 101 is in the language of the DFA below.

Follow arc labeled 1.
Example: String in a Language

String 101 is in the language of the DFA below.

Then arc labeled 0 from current state B.
Example: String in a Language

String 101 is in the language of the DFA below.

Finally arc labeled 1 from current state A. Result is an accepting state, so 101 is in the language.
Example – Concluded

The language of our example DFA is:

\{w \mid w \text{ is in } \{0,1\}^* \text{ and } w \text{ does not have two consecutive } 1\text{'s}\}

Read a set former as "The set of strings w..."

Such that...

These conditions about w are true.
Proofs of Set Equivalence

- Often, we need to prove that two descriptions of sets are in fact the same set.
- Here, one set is “the language of this DFA,” and the other is “the set of strings of 0’s and 1’s with no consecutive 1’s.”
Proofs – (2)

In general, to prove $S = T$, we need to prove two parts: $S \subseteq T$ and $T \subseteq S$. That is:

1. If w is in S, then w is in T.
2. If w is in T, then w is in S.

Here, $S =$ the language of our running DFA, and $T =$ “no consecutive 1’s.”
Part 1: $S \subseteq T$

- **To prove**: if w is accepted by then w has no consecutive 1’s.
- **Proof is an induction on length of w.**
- **Important trick**: Expand the inductive hypothesis to be more detailed than the statement you are trying to prove.
The Inductive Hypothesis

1. If $\delta(A, w) = A$, then w has no consecutive 1’s and does not end in 1.
2. If $\delta(A, w) = B$, then w has no consecutive 1’s and ends in a single 1.

Basis: $|w| = 0$; i.e., $w = \epsilon$.

- (1) holds since ϵ has no 1’s at all.
- (2) holds *vacuously*, since $\delta(A, \epsilon)$ is not B.

Important concept: If the “if” part of “if..then” is false, the statement is true.
Inductive Step

- Assume (1) and (2) are true for strings shorter than \(w \), where \(|w|\) is at least 1.
- Because \(w \) is not empty, we can write \(w = xa \), where \(a \) is the last symbol of \(w \), and \(x \) is the string that precedes.
- IH is true for \(x \).
Inductive Step – (2)

- Need to prove (1) and (2) for \(w = xa \).
- (1) for \(w \) is: If \(\delta(A, w) = A \), then \(w \) has no consecutive 1’s and does not end in 1.
- Since \(\delta(A, w) = A \), \(\delta(A, x) \) must be A or B, and \(a \) must be 0 (look at the DFA).
- By the IH, \(x \) has no 11’s.
- Thus, \(w \) has no 11’s and does not end in 1.
Inductive Step – (3)

- Now, prove (2) for \(w = xa \): If \(\delta(A, w) = B \), then \(w \) has no 11’s and ends in 1.
- Since \(\delta(A, w) = B \), \(\delta(A, x) \) must be \(A \), and \(a \) must be 1 (look at the DFA).
- By the IH, \(x \) has no 11’s and does not end in 1.
- Thus, \(w \) has no 11’s and ends in 1.
Part 2: $T \subseteq S$

- Now, we must prove: if w has no 11’s, then w is accepted by

- **Contrapositive**: If w is not accepted by

- Key idea: contrapositive of “if X then Y” is the equivalent statement “if not Y then not X.”
Using the Contrapositive

- Because there is a unique transition from every state on every input symbol, each w gets the DFA to exactly one state.
- The only way w is not accepted is if it gets to state C.
Using the Contrapositive – (2)

◆ The only way to get to C [formally: \(\delta(A,w) = C \)] is if \(w = x1y \), \(x \) gets to B, and \(y \) is the tail of \(w \) that follows what gets to C for the first time.

◆ If \(\delta(A,x) = B \) then surely \(x = z1 \) for some \(z \).

◆ Thus, \(w = z11y \) and has 11.
Regular Languages

◆ A language L is *regular* if it is the language accepted by some DFA.
 ◆ Note: the DFA must accept only the strings in L, no others.

◆ Some languages are not regular.
 ◆ Intuitively, regular languages “cannot count” to arbitrarily high integers.
Example: A Nonregular Language

$L_1 = \{0^n1^n \mid n \geq 1\}$

◆ **Note**: a^i is conventional for i a’s.
 ◇ Thus, $0^4 = 0000$, e.g.

◆ **Read**: “The set of strings consisting of n 0’s followed by n 1’s, such that n is at least 1.

◆ Thus, $L_1 = \{01, 0011, 000111, \ldots\}$
Another Example

$L_2 = \{ w \mid w \text{ in } \{(,)\}^* \text{ and } w \text{ is } balanced \}$

- Balanced parentheses are those sequences of parentheses that can appear in an arithmetic expression.
- E.g.: (), (())(), ((())), (((())))..., ...
But Many Languages are Regular

- They appear in many contexts and have many useful properties.
- **Example**: the strings that represent floating point numbers in your favorite language is a regular language.
Example: A Regular Language

$L_3 = \{ w \mid w \text{ in } \{0,1\}^* \text{ and } w, \text{ viewed as a binary integer is divisible by 23}\}$

◆ The DFA:
 ◆ 23 states, named 0, 1,…,22.
 ◆ Correspond to the 23 remainders of an integer divided by 23.
 ◆ Start and only final state is 0.
Transitions of the DFA for \(L_3 \)

- If string \(w \) represents integer \(i \), then assume \(\delta(0, w) = i \mod 23 \).
- Then \(w0 \) represents integer \(2i \), so we want \(\delta(i \mod 23, 0) = (2i) \mod 23 \).
- Similarly: \(w1 \) represents \(2i+1 \), so we want \(\delta(i \mod 23, 1) = (2i+1) \mod 23 \).
- **Example:** \(\delta(15,0) = 30 \mod 23 = 7; \) \(\delta(11,1) = 23 \mod 23 = 0 \).
Another Example

\[L_4 = \{ w \mid w \text{ in } \{0,1\}^* \text{ and } w, \text{ viewed as the reverse of a binary integer is divisible by 23} \} \]

- **Example**: 01110100 is in \(L_4 \), because its reverse, 00101110 is 46 in binary.
- **Hard to construct the DFA.**
- **But there is a theorem that says the reverse of a regular language is also regular.**