
Experiences with HyperBase: A Hypertext Database
Supporting Collaborative Work

Uffe Kock Wiil
Department of Computer Science

Aalborg University, Denmark
Email: kock@iesd.auc.dk

A b s t r a c t

This paper describes the architecture and experiences
with a hyperbase (hypertext database). HyperBase is
based on the client-server model and has been designed
especially to support collaboration. HyperBase has been
used in a number of (hypertext) applications in our lab
and is currently being used in research projects around
the world to provide database support to all kinds of ap-
plications. One application from our lab is a multiuser
hypertext system for collaboration which deals with
three fundamental issues in simultaneous sharing: access
contention, real-time monitoring and real-time commu-
nication. Major experiences with HyperBase (collabo-
ration support, data modeling and performance) gained
from use both in our lab and in different projects at other
research sites are reported. One major lesson learned is
that HyperBase can provide powerful support for data
sharing among multiple users simultaneously sharing the
same environment.

Keyw ords : Experience, hypertext database, collabo-
ration, data modeling, performance.

1 I n t r o d u c t i o n

In recent years hypertext (see Conklin [5] and Nielsen
[9] for an introduction) has become quite popular and
widespread. To many people, professionals as well as lay-
men, hypertext has become the way of organizing docu-
ments. This has to a high degree been possible due to the
rather advanced user interfaces developed for hypertext
(the term hypertext will be used to cover both hypertext
and hypermedia).

Anyone who has used hypertext systems in an organi-
zational setting will, however, soon recognize the need for
hypertext systems that allow several people to work on
the same document at the same time, preferably using
multiple machines connected through a network. This
calls for a system where there is a clear separation be-
tween the user interface and the storage of nodes and
links. The hyperbase (hypertext database) presented
here provides such a storage medium with the low-level
facilities necessary to realize a hypertext system for mul-
tiple users.

This paper describes the results of the HyperBase
project. The focus in the project is on multiuser and
collaboration aspects. HyperBase provides some basic
mechanisms for collaboration not found in other same
generation hyperbases such as HAM [3], GMD-IPSI's
HyperBase [13] and HKL's HB1 [11]. HyperBase has
been used in a variety of applications. One focused on
data modeling aspects [7], another addressed multinser
and collaboration issues [19], another used HyperBase as
a storage medium for C + + program fragments [15] and
yet another used HyperBase to extend Smalltalk with
persistent and shareable objects [1]. Based on first ex-
periences, HyperBase has been developed further to im-
prove the design and deal with some of the shortcomings.
The first reliable version was released as free software in
July 1991. As of April 1993, more than 300 sites around
the world have down-loaded the software; some just to
look at it, others to try the provided collaborative hy-
pertext system [19] and still others to use HyperBase to
provide database support to different applications.

HyperBase has been well-tested and is in use in our
lab. The diversity of applications combined with feed-
back from other people currently using HyperBase has
given valuable knowledge about development of hyper-
bases. Using HyperBase has shown that it can provide
efficient and powerful support for controlled data shar-
ing among people working on a joint project. Although
intended to support hypertext applications, HyperBase
has proven to be useful as a database for other kinds
of applications as well. The HyperBase project is fin-
ished and a new hypertext platform, Hyperform [20], is
currently being developed based on the experiences with
HyperBase. In addition to multiuser and collaboration
aspects, Hyperform also addresses other important is-
sues of hyperbases such as data model evolution, access
control, version control, query and search support and
transaction management, which are necessary to provide
the effective database support needed for the next gen-
eration hypertext system.

We continue in Section 2 with a description of Hy-
perBase. Section 3 describes two applications using Hy-
perBase. In Section 4, we report our experiences with
HyperBase and in Section 5, we show how this approach
relates to other research appearing in the hyperbase liter-
ature. Section 6 summarizes major points of this paper.

SIGMOD RECORD, Vol. 22, No. 4, December 1993 19

2 HyperBase

The intentions with the design of HyperBase are to con-
struct a general tool suitable as a database for different
hypertext (text and other media) applications. Hyper-
Base captures the general idea of hypertext, provides
operations on basic entities (nodes and links) and is easy
to extend and adapt to a certain field. HyperBase is de-

~ ~ a ~ e ~ l m u l t i u s e r services

Figure 1: The different layers of HyperBase.

signed as a layered system with the following layers (Fig-
ure 1): basic entities (file system storing and retrieval),
basic services (operations on entities) and multiuser ser-
vices (locking and event handling).

Basic en t i t i e s : This layer provides the interface to the
underlying file system. The interface is a simple data
model of nodes and links:

• Links are separate objects and can only refer to
nodes.

• Links are unidirectional and many-to-one: links can
only refer to one node, but several nodes can share
the same link object.

• Nodes can be the source for many links.

• Both nodes and links can have a set of predefined
key/value pairs associated with them.

• Versioning on nodes, not on links.

The system keys in links consist of the destination node
and various system information. For nodes, the inter-
esting keys consist of a list of outgoing links and the
data field. Unlike the other keys, the link list and data
field are of variable size. HyperBase does not place any
restrictions on the data field; it is solely up to the appli-
cations to decide how to use this field. The reason for
this is that we wanted HyperBase to be .able to store all
kinds of (binary) data and, therefore, we cannot predict
what kind of information actually will be stored.

Before compiling the HyperBase server the user can
specify names of additional keys and the fixed maximum
size of their values (number of bytes). These keys will be
included in all nodes (or links). Examples of predefined
keys could be: owner, date, type, name, etc.; i.e., static
keys which the application programmer can predict. In
addition to predefined keys, HyperBase supports run-
time attachment of variable size attribute/value pairs to
nodes.

Version management in HyperBase is inspired by the
RCS model [16]. The RCS model is extended with no-
tions of global and local versions:

• a global version is visible to all users, while

• a local version enables users to work in privacy until
the work is ready to be passed on to other users.

Global versions are static, while local versions of a node
are deleted when the most recent local version is checked
in as a global version. Before a node is created, users
have to decide whether or not different versions of the
node should be maintained.

Basic services: The basic services provided by Hyper-
Base can be divided into five categories of operations:

1. Creating and maintaining structures: Operations to
create and delete entities and maintain references
between nodes and links.

. Reading and writing: Operations to read and write
predefined keys in entities. HyperBase also provides
a function capable of returning a list of all nodes or
links.

3. Attribute management: Operations to create, de-
lete, retrieve and modify attributes in nodes.

4. Version management: Operations to create, delete
and manipulate global and local versions of nodes.

5. Networking: Connection and disconnection of Hy-
perBase sessions, and a toggle-read-write-buffering
function used to speed network communication.

M u l t i u s e r services: HyperBase is designed with spe-
cial support for collaborative work in a multiuser envi-
ronment. To maintain a single updated set of data acces-
sible by multiple asynchronous users, HyperBase is im-
plemented as a server (based on the client-server model)
allowing only one client at a time to access the shared
resource, the hyperdocument. To support collaborative
work, two mechanisms are included in the design, the
lock and event mechanisms.

The event mechanism enables users to be notified
when other users perform important actions in Hyper-
Base, or when certain critical events occur on nodes
or links of interest to them. Users can subscribe to
any operation on any key in both nodes and links:
e v e n t (e n t i t y , o p e r a t i o n , k e y) . The following is a list
of examples of how the event mechanism can be used:

• event(all,write,data): tell me whenever the data
field of any node is written (only nodes have a data
field).

• event(all,lock,all): tell me whenever any key of any
entity is locked.

• event(all,all,all): event on all operations on all keys
of all entities (system logger).

20 S I G M O D R E C O R D , Vol . 22, No . 4, D e c e m b e r 1993

It is possible for a user to lock an entity while tile con-
tent is being updated• The lock mechanism is capable
of locking (and unlocking) whole nodes and links in one
operation, or single keys in nodes and links one at a
time. This enables one person to modify the data field
of the node, other persons to modify other keys of the
node, while yet another person is annotating it by cre-
ating links. This fine grained lock mechanism enables
several persons to share da ta and keys within a node or
link, instead of sharing a network of nodes and links,
with only one person operating on a node or a link at
a time. It is possible to read contents of locked keys of
nodes and links and, in addition, readers can get the lo-
gin (user) name of the person having locked a specific
key in an entity.

2.1 Implementa t ion

In order to simplify the implementation, test and main-
tenance, HyperBase is separated into functional blocks
each performing specified tasks (Figure 2). Each block is

Network
Communication ^

la Operations p

N I I • C

| II : I " ^
X

0

File Locking Client
System Event Interface

Interface Handling

Figure 2: The four functional blocks of HyperBase.

implemented as a C + + class. Block 1 through 4a make
up the HyperBase server, which is a single process run-
ning on the server machine. Block 4b is the client library,
which is part of an application program running on each
client machine. The server communicates with the client
applications through a byte stream protocol (TCP/IP) ,
although it may alternatively be statically linked with an
application. Block 1 provides storing and retrieval of the
basic entities on the host file system, block 2 provides
the basic services, while block 3 and 4a are the multiuser
part of HyperBase (Figure 1). The dotted line between
block 4a and 4b illustrates the physical network, e.g. an
Ethernet.

F i le s y s t e m in t e r f ace : An obvious way to store links
and nodes would be to store one entity (node or link) in
a file of its own. A preliminary HyperBase experiment
[4] showed that opening and closing files are very time-
consuming in Unix. Therefore, this solution would place
a bottleneck at the bot tom of HyperBase. An alternative
solution would be to store all information in a single file,
which could be kept open at all times. Here we would
run into problems of storage management, e.g. how to
reclaim storage when nodes and links are deleted•

We have chosen a file representation where nodes and
links are stored in three files. One file for nodes, one

for links and one for data fields and dynamic allocated
attributes of nodes. Tile reason for keeping the variable
size data fields and dynamic allocated attributes separate
from the node (Figure 3) is to make all nodes the same
size. Data fields and dynamic allocated attributes are

n o d e
a t t r i b u t e

~ r e f e r e n c e

\ ~ / Y

Figure 3: An illustration of the implementation of the
data mode/, consisting of nodes and link's. The contents
of data tlelds and dynamic allocated attributes are stored
in a separate [lie. Nodes contain references to the loca-
tion of its data t~eld and attributes on the data tile.

divided into blocks of equal size and organized similar to
i-nodes in Unix. Thus, the size of the basic entities in
all three files is the same, which makes data access and
management simple and very efficient.

Before the server is compiled, different parameters can
be specified in a configuration file, for instance: prede-
fined keys for nodes and links and the block size in the file
for the data fields and dynamically allocated attributes.
The configuration program determines the actual size of
the entities in the three files.

3 U s i n g H y p e r B a s e

A variety of applications in our lab have used HyperBase
to provide database support [1, 2, 7, 15, 19]. One such
application, Emacs HyperText System (EHTS), a mul-
tiuser hypertext system for collaboration, is described in
Section 3.1. After the release of HyperBase, the system
has been used in a number of research projects around
the world to provide database support for different ap-
plication areas such as software engineering systems, col-
laborative systems, personal information managers and
hypertext systems. One of these projects, the EGRET
project at the University of Hawaii is briefly described
in Section 3.2.

3.1 EHTS

EHTS [19] is a collaborative hypertext authoring system
based on HyperBase. EHTS consists of two tools: a mul-
tiple window text editor and a graphical browser. EHTS
enables a group to collaborate on a shared task. Changes
made on shared data by one user are immediately visible
to all other members of the group. Group members can
communicate in real-time and send asynchronous mes-
sages within the EHTS environment, enabling collabora-
tion among members separated by time as well as space.

SIGMOD RECORD, Vol. 22, No. 4, December 1993 21

Trigg et al. [17] describe three fundamental issues in
simultaneous sharing: acc~..s contention, real-time mon-
itoring and real-time communication. EHTS uses events
and fine grained locks to deal with these issues and
to provide controlled data sharing among collaborating
group members [18]. EHTS also provides contention res-
olution at the level of attributes in nodes and links and
allows any number of users to simultaneously read and
display the da ta field of a given node in a window on
the screen. EHTS allows locked objects to be read by
any number of users, however permission to make mod-
ifications to the data field are restricted to one user at
a time. Locks are allocated when the user invokes the
editor lock command indicating a change in mode from
browse to edit. Locks are deallocated when either the ed-
itor unlock command is invoked or the window is closed.
All readers are notified as soon as possible that a data
field they are accessing may be changed. Readers are
provided with four types of modification notices:

I n t e n t i o n . All readers are notified when one person sig-
nals intention to modify the data field of the node
by obtaining a lock. The node icon in the browser is
shown b o l d faced . The readers also get the name
of the person, enabling contact through use of the
internal talk mechanism (real-time communication).
Readers can then subscribe to the event correspond-
ing to when the writer unlocks the data field.

U p d a t e . When the writer actually writes the modified
da ta field of the node onto the shared database, all
readers of the data field automatically get the con-
tents in the da ta field display updated with modifi-
cations made by the writer (real-time monitoring).

C o m p l e t i o n . When the writer is finished modifying the
da ta field of a node, users having subscribed to this
event get notified that the data field of the node has
been unlocked and is write accessible.

D e l e t i o n . When a node is deleted, the display of the
node is removed from the screens of all readers.

3 . 2 T h e E G R E T p r o j e c t

The EGRET (Exploratory GRoup work EnvironmenT)
project [8] at the University of Hawaii is pursuing a re-
search program designed to investigate evolution in col-
laborative systems. E G R E T is a framework for support-
ing a fundamental characteristic of exploratory group
work: the dynamic, emergent and evolving nature of the
structure of information and artifacts produced by ex-
ploratory collaborative activities. HyperBase is used as
a database server for multiuser support in EGRET.

4 Experiences with HyperBase

This Section describes the major experiences with Hy-
perBase obtained by its extensive use in different ap-
plications in our lab and at other research sites. The

experiences are grouped into three categories: collabora-
tion support, data modeling and performance. We also
describe how HyperBase has been improved in various
ways based on early experiences.

4 .1 C o l l a b o r a t i o n s u p p o r t

HyperBase is designed to support collaborative work in
a multiuser environment. Collaboration is supported by
the event and lock mechanisms:

• The event mechanism enable applications to moni-
tor changes in the shared network of nodes and links.

• The fine grained lock mechanism changes the nature
of access contentions, moving the contention from
the level of whole entities to the level of single keys
in entities.

As described, EHTS uses events and locks to help users
solve access contentions. Users are notified when other
users perform lock operations on nodes opened in win-
dows on the screeni and when locked nodes of interest to
them become unlocked. EHTS uses HyperBase events to
monitor changes in the shared network of nodes and links
in both the author and browser tool {real-time monitor-
ing). "In this way users can profit by the work of other
users immediately after the work is carried out. Events
and locks are also used to provide real-time communica-
tion and support messages between users working within
the environment, enabling collaboration between users
separated by time as well as space.

I t is our experience that these two mechanisms to-
gether provide powerful support for controlled data shar-
ing between multiple users working in the same environ-
ment. The mechanisms facilitate the distribution of reb
evant information among participants, allow people to
follow the overall progress and allow the participants to
safely edit and change the hyperstructure. Thus, the
provided support goes beyond the simple mechanism of
sharing data, and meets the challenges of support for the
social interactions involved in sharing data, as described
by Halasz [6].

Locks: In its original form, the lock mechanism was
only capable of locking whole links and nodes and not
specific keys in entities one at a time. Furthermore, it
was not possible for users to read keys in locked entities.
The former problem means, for instance, that when one
user is updating the da ta field (the node is locked), other
users cannot update other keys in the node. The latter
problem makes it impossible to navigate through a hy-
perdocument when some of the nodes or links are locked.
Therefore, in order to make better use of the lock facility,
it was changed to its present form.

E v e n t s : The event mechanism is a very important part
of the collaboration support in HyperBase, and to make
it even more useful, a more sophisticated way of sub-
scribing to events could be provided. A client should be

22 S I G M O D R E C O R D , Vol . 22, No. 4, D e c e m b e r 1993

able to set up a pattern matching his exact needs for
event subscription. He should be able to specify (in one
subscription): tell me whenever any client, except me,
creates a new node, or: tell me about all operations, ex-
cept lock operations, performed on all keys in nodes and
links. The latter event pattern matching can also be set
up with the existing event mechanism, but it requires
one subscription per operation, minus the lock operation
naturally. The event pattern matching feature is there-
fore mostly a matter of efficiency.

H y p e r f o r m : Both the event and lock mechanism has
survived the move into the next generation hyperbase
at our lab. In Hyperform these mechanisms are similar
to the original ones, since these have been proven to be
necessary and sufficient to provide support for collabo-
rative work. In addition, Hyperform supports the event
pattern matching feature.

4 .2 D a t a m o d e l i n g

HyperBase provides a simple data model consisting of
nodes and links. It is possible to specify (predefined) keys
in both nodes and links before compilation and attach
additional attributes/value pairs to nodes at run-time.

More powerful data models can be maintained with
these basic constructs. One application [7] introduced an
extended data model at the application level based upon
the simple data model in HyperBase. The model, called
the structure-atom model, divides nodes into two types:
those containing data (atom nodes) and those creating
the structure (structure nodes). Links in the structure-
a tom model are bidirectional, and are constructed of two
of the unidirectional links of the underlying data ,nodel.
Nodes contain a predefined key type specifying the type
of the node. Structure nodes cannot contain data and
can be compared with directories, and a tom nodes can
be compared with files in Unix.

Some applications using HyperBase did not require
data model support beyond the basic node-link model
[2, 15], while others found the data model in HyperBase
too simple [1, 7, 19] and had to combine some of the ba-
sic constructs to provide the necessary data model sup-
port. It was mainly in two areas that the data model
was extended: to provide a higher level of abstraction (a
hierarchy of nodes) and to provide bidirectional links.

N o d e h i e r a r c h y : Node hierarchies in HyperBase can
be maintained at the application level by the use of a
predefined key in the node specifying the node type, e.g.
da ta (text, graphics, pictures, ...) or directory. Dis-
cussions continue in the hypertext literature about aug-
menting the basic node and link based data model with
a composite data model object [6]. HAM [3] supports
composites (called contexts), which partition the nodes
and links in a hypertext graph. GMD-IPSI 's HyperBase
[13] supports a similar construct. In experiments per-
formed in our lab, the directory abstraction known from

file systems was able to support the needs for node hi-
erarchies and, in some cases, the basic node-link model
was sufficient.

Links: As mentioned, some of the applications discov-
ered the need for bidirectional links. Bidirectional links
can be provided by use of a predefined key in the link
keeping track of the source node or by use of two of the
provided unidirectional links, but both of these solutions
require extra communication between the clients and Hy-
perBase. The communication between clients and Hy-
perBase should be minimized to keep a reasonable load
on the HyperBase server.

The provided many-to-one link feature was never used
in any of the applications. A one-to-one link possibility
(one source node and one destination node) has shown
to be sufficient in most cases. It is also our experience
that it should be possible to attach attribute/value pairs
to link objects, as can be done to node objects in Hyper-
Base, and it should be possible to invoke programs when
following a link.

Q u e r y a n d search: HyperBase has very limited query
and search facilities. Clients can retrieve a list of all
nodes and links and how they are interconnected. But,
for instance, it is not possible to get a list of the nodes
and links that are locked by other users already con-
nected to the hypertext system.

We discovered that it is crucial to have a query mech-
anism which can return a fully updated state of the un-
derlying hyperdocument. When you start-up a graphical
browser in a multiuser environment, it is nice if you can
see which nodes are locked by other users already con-
nected to the system [19]. Many other query and search
possibilities should also be present in a hyperbase:

• Fast keyword, attribute and string search.

• Extraction of specific nodes and links that match
a specific description: nodes or links of a certain
type, with certain attributes, locked nodes or links,
all nodes or links, etc.

• Extraction of specific subgraphs; for instance, nodes
of a certain type using links of certain types (pattern
matching).

Halasz [6] divides search and query facilities into two
broad classes: content search and structure search. In
content search, all nodes and links in the network are
considered to be independent entities and are examined
individually for a match to the given query. Structure
search involves a query language geared toward describ-
ing hypertext network structure, and a search engine ca-
pable of satisfying the queries expressible in the hyper-
text query language.

V e r s i o n m a n a g e m e n t The version management fa-
cilities of HyperBase were not present in the first ver-
sion. It was added later [2] to enable HyperBase to sup-

S I G M O D R E C O R D , Vol . 22, No. 4, D e c e m b e r 1993 23

port applications needing to maintain multiple versions
of nodes.

This feature is very useful in collaborative working ses-
sions such as software development projects where differ-
ent programmers work on different parts of the project.
Local versions makes it possible to always keep a running
version (the global version) of the program and, at the
same time, enable programmers to further develop dif-
ferent parts of the program in privacy and commit the
changes t o the running version whenever the parts are
tested and ready.

H y p e r f o r m : Hyperform provides object-oriented data
modeling facilities. Classes providing basic features (con-
currency control, notification control, access control, ver-
sioning control and query and search) can be specialized
using multiple inheritance to provide database configu-
rations supporting all kinds of data model objects and
operations. This way the data model does not place any
restrictions on facilities that can be provided by the ap-
plication.

4 . 3 P e r f o r m a n c e

HyperBase is quite efficient. EHTS is capable of follow-
ing a link and displaying the node in a new window in less
than a second on average. The start-up time for EHTS
tools differs from 10-30 seconds depending on the load
on the network and HyperBase (with several thousands
nodes and links stored), when using the buffering fea-
ture in the server (described below). Both EHTS tools
cache a part of the information in HyperBase to speed
operations and monitor changes on shared data.

N e t w o r k i n g : In situations where clients made exten-
sive use of the read and write operations (for instance
when EHTS tools start-up) communication times turned
out to be a problem in the first version of HyperBase.
The efficiency of the network protocols was improved by
a factor of at least 10 in these situations by introducing
a toggle-read-write-buffering function in HyperBase.

Before sending several read (and write) requests, the
client can tell the server that it does not want any re-
turn values yet by sending the toggle command to the
server. When this option is set, the server buffers all
return values until the client sends the toggle command
again. This extension of HyperBase enables clients to
send large numbers of read (and write) operations to the
server in one package. After sending the last request,
clients use the toggle command again and receive all re-
turn values in one package.

For instance, EHTS Editor reads the names of all
nodes into a cache when it starts-up (to provide comple-
tion on node names in its commands). First, it retrieves
a list of all node numbers from HyperBase. Then, to
reduce network traffic, it sends one large package con-
sisting of the toggle command followed by all the read
requests for node names (one for each node present in Hy-
perBase) followed by the toggle command again. Finally,

the editor receives all return values in one large package.
Thus, with the toggle-read-write-buffering function net-
work communication is reduced to two packages instead
of several thousands, depending on the number of nodes
in HyperBase.

5 R e l a t e d w o r k

Other approaches to hyperbase systems include Tek-
tronix' Hypertext Abstract Machine (HAM) [3], GMD-
IPSI's HyperBase [13] and Cooperative Hypermedia
Servers (CHS) [12], HRL's HB1 [11] and HB2 [10], UNC's
Distributed Graph Service (DGS) [14] and RMIT's Hy-
perion [21]. These hyperbase approaches differ in their
intended application areas, but have one thing in com-
mon: they are all general-purpose hyperbase servers
intended to provide application independent hypertext
support. HAM is designed to support hypertext based
CAD and CASE applications and the GMD-IPSI ap-
proaches are designed to support a hypertext based au-
thoring system. HRL's HB1 and HB2 feature open,
extensible architectures focusing on support for inter-
application linking, UNC's DGS services a hypertext
system for structuring ideas in collaborative working
sessions and RMIT's Hyperion concentrates on efficient
management (storage and retrieval) of large volumes of
text.

HyperBase is designed to support collaboration among
its users and was the first hyperbase system to include
a general event mechanism and provide user-controlled
locks. Other hyperbase systems appearing at the same
time as HyperBase such as HAM, GMD-IPSI's Hyper-
Base, Hyperion, and HB1 does not offers support for
collaboration beyond the simple mechanism of data shar-
ing known from client-server architectures. These ap-
proaches does not provide general event and lock mech-
anisms to support CSCW applications.

The successors of HB1 (HB2) and GMD-IPSI's Hy-
perBase (CHS) provide event and lock mechanisms op-
erating at the object-level. The event and lock mech-
anisms of HyperBase and its successor Hyperform pro-
vide attribute-level event and lock mechanisms enabling
a finer grained collaboration.

6 Summary

In this paper, we have described the architecture and
experiences with HyperBase, a hypertext database sup--
porting collaborative work. The extensive use of Hy-
perBase in different applications has shown that some
applications need data model support beyond support
directly available in HyperBase and have to combine ba-
sic constructs into more powerful data models. Other
applications need more powerful query and search facil-
ities than provided by HyperBase.

More important, using HyperBase has also proven that
it can provide efficient and powerful support for con-
trolled data sharing among people working on a joint

24 S I G M O D R E C O R D , Vol . 22, No . 4, D e c e m b e r 1993

project. Although intended for hypertext applications,
HyperBase has proven to be useful as a database for
other kinds of applications as well.

The emphasis in this (our first} generation hyperbase
system was on collaboration support. The event and lock
mechanisms have proven to be necessary and sufficient to
provide support for collaborative work. This work is the
first step towards providing support for the social inter-
actions involved in collaborative use of a shared network,
as described by Halasz [6]. Experiences gained from this
work have been used to identify several important issues
to be addressed in future hyperbase research.

P r e s e n t s t a t u s : The HyperBase project is finished.
HyperBase development has taken approximately 2.5
man years of effort (400 KByte source code). EHTS de-
velopment has taken approximately 1.5 man years (200
KByte source code). HyperBase and EHTS are available
via anonymous ftp from iesd.auc.dk in the hypertext di-
rectory.

Based on the experiences with the HyperBase project,
an approach to flexible hyperbase support predicated on
the notion of extensibility is currently being developed
[20]. The extensible hypertext platform (Hyperform) im-
plements basic hyperbase services that can be tailored
to provide specialized hyperbase support. Hyperform is
based on an internal computational engine that provides
an object-oriented extension language which allows new
data model objects and operations to be added at run-
time. Hyperform has a number of built-in classes to pro-
vide basic hyperbase features such as concurrency con-
trol, notification control (events), access control, version
control and search and query. Each of these classes can
be specialized using multiple inheritance to form virtu-
ally any type of hyperbase support needed in next gener-
ation hypertext systems. The first version of Hyperform
is implemented and operational in Unix environments.
Early experiences indicate that the Hyperform approach
greatly reduces the effort required to provide high qual-
ity customized hyperbase support to dynamic, open and
distributed hypertext applications.

A c k n o w l e d g m e n t s : I wish to acknowledge Claus Bo
Nielsen, who took part in both the development of EHTS
and HyperBase, and Carsten Ruseng Jakobsen, Finn
S¢lvsten, Per Magnus Petersen, Hans Mejdahl Jeppesen,
Poul Larsen, Morten Tolb¢l and Levi Christiansen, who
also were part of the HyperBase team.

R e f e r e n c e s

[1] P. Abrahamsen et al. Introduction of graph-grammars in
programming environments. Master's project, Aalborg
University, June 1990.

[2] T. Andersen et al. HT-KSVK: A programming environ-
ment with support for version control and configuration
management. Master's project, Aalborg University, Dec.
1990. (in Danish).

[3] B. Campbell and J. M. Goodman. HAM: A general pur-
pose hypertext abstract machine. Communications of
the ACM, 31(7):856-861, July 1988.

[4] J. P. Christensen. HyperBase: A server for hypertext
applications. Master's thesis, Aalborg University, Aug.
1988.

[5] J. Conkfin. Hypertext: An introduction and survey.
IEEE Computer, 20(9):17-41, Sept. 1987.

[6] F. G. Halasz. Reflections on NoteCards: Seven issues for
the next generation of hypermedia systems. Communi-
cations of the ACM, 31(7):836-852, July 1988.

[7] C. R. Jacobsen, H. M. Jeppesen, and P. M. Petersen.
Urd: Using the hypertext concept to project support.
Master's thesis, Aalborg University, June 1990.

[8] P. Johnson. Supporting exploratory CSCW with the
EGRET framework. In ACM CSCW '9~ Proceedings,
pages 298.--305, Toronto, Canada, Nov. 1992.

[9] J. Nielsen. Hypertext ~ Hypermedia. Academic Press
Inc., 1990.

[10] J. L. Schnase. HB~: A hyperbase management system]or
open, distributed hypermedia system architectures. PhD
thesis, Texas A&M University, 1992.

[11] J. L. Schnase, J. J. Leggett, D. L. Hicks, P. J. Nfirnberg,
and J. A. Sanchez. Design and implementation of the
HB1 hyperbase management system. EPoodd, 6(2), 1993.

[12] H. A. Schfitt and J. M. Haake. Server support for cooper-
ative hypermedia systems. In Proceedings of Hypermedia
'9S, Zurich, Switzerland, Mar. 1993.

[13] H. A. Scchlitt and N. A. Streitz. HyperBase: A hyperme-
dia engine based on a relational database management
system. In ECHT '90 Proceedings, pages 95-108, Ver-
sailles, l~rance, Nov. 1990.

[14] J. B. Smith and F. D. Smith. ABC: A hypermedia sys-
tem for artifact-based collaboration. In Hypert,,xt '91
Proceedings, pages 179--192, San Antonio, Texas, Dec.
1991.

[15] F. S¢lvsten. A visual interconnection language. Master's
thesis, Aalborg University, June 1990.

[16] W. F. Tichy. RCS: A system for version control. Software
- Practice and Experience, 15(7):637--654, July 1985.

[17] R. H. Trigg, L. A. Succhman, and F. G. Halasz. Support-
ing collaboration in NoteCards. In CSCW '86 Proceed-
ings, pages 147-153, Austin, Texas, Dec. 1986.

[18] U. K. Wiil. Using events as support for data sharing
in collaborative work. In International Workshop on
CSCW, pages 162-176, Berlin, Germany, Apr. 1991.

[19] U. K. Wiil. Issues in the design of EHTS: A multiuser
hypertext system for collaboration. In HICSS-~5 Pro-
ceedings, pages 629-639, Kauai, Hawaii, Jan. 1992.

[20] U. K. Wiil and J. J. Leggett. Hyperform: Using ex-
feasibility to develop dynamic, open and distributed hy-
pertext systems. In A CM ECHT '9~ Proceedings, pages
251-261, Milano, Italy, Dec. 1992.

[21] J. Zobel, R. Wilkinson, J. Thorn, E. Mackie, R. Sacks-
Davis, A. Kent, and M. Fuller. An architecture for hy-
perbase systems. In Proceedings of the 1st Australian
Multi-media Communications, Applications ~ Technol-
ogy Workshop, pages 152-161, 1991.

SIGMOD RECORD, Vol. 22, No. 4, December 1993 25

