
0018-9162/97/$10.00 © 1997 IEEE68 Computer

Software-Based
Replication for
Fault Tolerance

One solution for achieving fault tolerance is to
build software on top of specialized hardware.
Companies such as Tandem and Stratus have

successfully pursued this solution for some applica-
tions. Economic factors, however, motivate the
search for cheaper software-based fault tolerance;
that is, replication handled entirely by software on
off-the-shelf hardware. Although replication is an
intuitive, readily understood idea, its implementa-
tion is difficult. Here we present a survey of the tech-
niques developed since the mid-80s to implement
replicated services, emphasizing the relationship
between replication techniques and group commu-
nication.

PROCESSES AND COMMUNICATION LINKS
A typical distributed system consists of a set of

processes exchanging messages via communication
links. Processes can be correct or incorrect. Correct
processes behave according to their specifications,
while incorrect processes either crash (stop receiv-
ing or sending messages) or behave maliciously (send
messages that do not follow the specification). In this
article, we consider only crash failures.

There are two basic system models for communi-
cation links: synchronous and asynchronous. The
synchronous model assumes that a known value
bounds the transmission delay of messages. In con-
trast, the asynchronous model does not set any limit
on the transmission delay, which adequately models
an unpredictable load of processors and links. This
makes the asynchronous model more general, and
we consider only this model here.

CORRECTNESS CRITERION
To discuss replicated servers, we must first explain

the correctness criterion linearizability.1 Sometimes

called one-copy equivalence, linearizability gives
clients the illusion of nonreplicated servers, a highly
desirable trait because it preserves the program’s
semantics.

Suppose a client process pi invokes operation op
with arguments arg on a nonreplicated server x. This
is denoted as op(arg). After client pi invokes op,
server x sends a response of the form ok(res), where
ok denotes successful completion of the invocation
and res the invocation response (res can be empty).
Fault tolerance is achieved by replicating the servers
on different sites of the distributed system. We
denote server x’s n replicas by x1, ..., xn.

Replication does not change the way we denote
invocations and the corresponding responses. Client
pi still issues one invocation, op(arg), and considers
one response, ok(res), as Figure 1 shows. However,
if the set of replicas xi do not handle the invocation
properly, the response can be incorrect. For example,
suppose server x implements a FIFO queue using
operations enqueue() and dequeue(). Assume an ini-
tially empty queue and client processes pi and pj that
perform two invocations:

• Process pi calls enqueue(a) and then dequeue(),
which returns response ok(b).

• Process pj calls enqueue(b) and then dequeue(),
which returns response ok(b).

Obviously this execution is incorrect; b has been
enqueued once but dequeued twice. Replication,
however, makes such an erroneous execution possi-
ble. Suppose server x is replicated twice (x1 and x2)
and the following happens:

• Replica x1 first receives the enqueue(a) invoca-
tion from pi then the enqueue(b) invocation

Replication handled by software on off-the-shelf hardware costs less than
using specialized hardware. Although an intuitive concept, replication
requires sophisticated techniques for successful implementation. Group
communication provides an adequate framework.

Rachid
Guerraoui
and
André
Schiper
Swiss Federal
Institute of
Technology

T
h

e
m

e
 F

e
a

tu
re

April 1997 69

from pj. The dequeue() invocation from pi causes
response ok(a) to be sent to pi. Finally, the
dequeue() invocation from pj causes response
ok(b) to be sent to pj.

• Replica x2 receives the enqueue(b) invocation from
pj, then the enqueue(a) invocation from pi. The
dequeue() invocation from pi leads to ok(b).
Finally, the dequeue() invocation from pj leads to
ok(a).

If pi selects ok(b) from x2 (because it receives this
response first), and pj selects ok(b) from x1 the result
is the incorrect execution that appears to enqueue b
once and dequeue it twice.

We cannot linearize this execution because replicas
x1 and x2 receive and handle invocations enqueue(a)
from pi and enqueue(b) from pj in a different order.
To ensure linearizability, client invocations must sat-
isfy the following properties:

• Order. Given invocations op(arg) by client pi and
op′ (arg′) by client pj on replicated server x, if xk

and xl handle both invocations, they handle them
in the same order.

• Atomicity. Given invocation op(arg) by client pi

on replicated server x, if one replica of x handles
the invocation, then every correct (noncrashed)
replica of x also handles op(arg).

REPLICATION TECHNIQUES
Two fundamental classes of replication techniques

ensure linearizability: primary-backup and active.
Due to space constraints, we do not cover hybrid tech-
niques that combine these techniques.

Primary-backup replication
This technique2 uses one replica, the primary, that

plays a special role: it receives invocations from client
processes and returns responses. Server x’s primary
replica is denoted prim(x); other replicas are backups.
Backups interact directly only with the primary replica,
not the client processes. Figure 2 illustrates how the
primary replica handles the invocation of op(arg) by
client pi (assuming the primary replica does not crash).

• Process pi sends op(arg) to prim(x) (primary replica
x1) together with unique invocation identifier invID.

• Prim(x) invokes op(arg), which generates
response res. Prim(x) updates its state and sends
the update message (invID,res,state-update) to
its backups. Value invId identifies the invocation,
res the response, and state-update, the state
update performed by the primary. Upon receiving

Figure 1. Interaction with a replicated server.

Invocation Response

Invocation Response

op(arg) ok(res)

op′(arg′) ok′(res′)

Client
process pi

Replicated server x

Time

Replica x1

Replica x2

Replica x3

Client
process pi

Figure 2. Primary-
backup technique.

Invocation Response

op(arg) ok(res)

Client process pi

Server x

Time

Primary replica x1

Backup replica x2

Backup replica x3

A B C

Update

Ack

Ack

Update

70 Computer

the update message, the backups update their
state and return an acknowledgment to prim(x).

• Once the primary replica receives the acknowl-
edgment from all correct (noncrashed) backups,
it sends the response to pi.

This scheme obviously ensures linearizability
because the order in which the primary replica receives
invocations defines the total order of all server invo-
cations. The reception of the state-update message by
all the backups ensures the atomicity property.

Ensuring linearizability despite the crash of the pri-
mary replica is more difficult. We can distinguish three
cases, in which the primary replica crashes

• before sending the update message to the backups
(point A in Figure 2)

• after (or while) sending the update message, but
before the client receives the response (point B), or

• after the client receives the response (point C).

In all three cases, we must select a new primary replica.
In the third case, the crash is transparent to the client.

In the first and second cases, the client will not receive a
response to its invocation and will suspect a failure. After
having learned the identity of the new primary replica,
the client will reissue its invocation. In the first case, the
new primary replica considers the invocation as new.

The second case is the most difficult to handle. The
solution must ensure atomicity: either all or none of
the backups must receive the update message. If none
of the backups receive the message, the second case
becomes similar to the first case. If all receive the

update message, the operation of client process pi

updates the state of the backups, but the client does
not receive a response and will reissue its invocation.
The new primary replica needs invID and res to avoid
handling the same invocation twice, which would pro-
duce an inconsistent state if the invocation is not idem-
potent. When the new primary replica receives
invocation invID, it immediately returns response res
to the client, rather than handling the invocation.

If we assume a perfect failure detection mechanism,
the primary-backup replication technique is relatively
easy to implement, apart from the atomicity issue just
discussed. The implementation becomes much more
complicated in an asynchronous system model
because the failure detection mechanism is not reli-
able (that is, we have to handle the case in which a
client incorrectly suspects the primary replica has
crashed). The view-synchronous paradigm presented
later defines the communication semantics that ensure
correctness of the primary-backup technique despite
an unreliable failure detection mechanism.

Active replication
Also called the state-machine approach,3 this tech-

nique gives all replicas the same role without the cen-
tralized control of the primary-backup technique.
Consider replicated server x and the invocation
op(arg) issued by pi. As shown in Figure 3,

• Invocation op(arg) goes to all the replicas of x.
• Each replica processes the invocation, updates its

own state, and returns the response to client pi.
• Client pi waits until it receives the first response

or a majority of identical responses. If the repli-
cas do not behave maliciously, then pi only waits
for the first response.

Active replication requires noncrashed replicas to
receive the invocations of client processes in the same
order. This requires a communication primitive that sat-
isfies the order and the atomicity properties introduced
earlier. We discuss this primitive, called total-order mul-
ticast (also called atomic multicast), in detail later.

Comparing replication techniques
Active replication requires operations on the repli-

cas to be deterministic, which is not the case in the
primary-backup technique. Determinism means that
an operation’s outcome depends only on a replica’s
initial state and the sequence of operations it has
already performed. Multithreaded servers typically
lead to nondeterminism.

In active replication, the crash of a replica is trans-
parent to the client process: The client never needs to
reissue a request. In primary-backup replication,

Figure 3. Active-replication technique.

Invocations Responses

op(arg) ok(res)

Client
process pi

Server x

Time

Replica x1

Replica x2

Replica x3

April 1997 71

although a backup’s crash is transparent to the client,
that of the primary replica is not. In that event, the client
can experience a significant increase in latency—the time
between invocation and the reception of the response.

GROUP COMMUNICATION
The group abstraction, as depicted in Figure 4, is

an adequate framework for providing the multicast
primitives required to implement both active and pri-
mary-backup replication. Several distributed systems
provide this abstraction (see the “Group Communi-
cation Systems” sidebar). Group gx, for example, can
abstractly represent the set of server x’s replicas. The
members of gx are the replicas of x, and gx can be used
to send a message to x’s replicas without naming them
explicitly.

Static versus dynamic groups
There are two fundamentally different types of

groups, static and dynamic. A static group’s mem-
bership does not change during the system’s lifetime.
Although we still expect static-group members to
crash, a static group does not change its membership
to reflect a member’s crash. That is, replica xk remains
a member of group gx after it crashes and before a
possible recovery.

A dynamic group’s membership changes during the
system’s lifetime. A group’s membership changes, for
example, when one of its members crashes. The sys-
tem removes crashed replica xk from the group. If xk

recovers later, it rejoins gx. We use the notion of view
to model the evolving membership of gx. The initial
membership of gx is v0(gx), and the ith membership of
gx is vi(gx). Sequence of views v0(gx), v1(gx), ..., vi(gx)
thus represents a history of group gx.4,5

Primary-backup replication requires the group’s
membership to change. If the primary replica crashes.

the group must elect a new primary replica. Therefore,
this technique uses dynamic groups. In contrast, active
replication does not require specific action when a
replica crashes, so it can employ static groups. Most
existing group communication systems, however,
implement active replication using dynamic groups.
This is because most of these systems rely on an imple-
mentation of total-order multicast that requires
dynamic groups. We discuss one exception later.

Group communication and active replication
Active replication requires a total-order multicast

primitive. TOCAST (m,gx) is the total-order multicast of
message m to group gx. Order, atomicity, and termi-
nation properties formally define this primitive.

• Order. Consider TOCAST (m1,gx) and TOCAST

(m2,gx). If xj and xk in gx deliver m1 and m2, they
deliver both messages in the same order.

• Atomicity. TOCAST(m,gx) ensures that, if replica
xj in gx delivers m, then every correct replica of
gx also delivers m.

• Termination. Process pi executes TOCAST(m,gx).
If pi is correct (does not crash), then every correct
replica in gx eventually delivers m. Termination is
a liveness property and ensures system progress.

Group Communication Systems
Isis was the first system to introduce group com-

munication primitives to support reliable distributed
applications.1 Initially developed at Cornell University
as an academic project, Isis later became a commercial
product, marketed first by Isis Distributed Systems
and later by Stratus Computers.

Researchers have developed several other systems.2

Among these are the toolkits Horus (Cornell University),
Transis (Hebrew University, Jerusalem), Totem (University
of California, Santa Barbara), Amoeba (Free University,
Amsterdam), Consul (University of Arizona, Tucson),
Delta-4 (Esprit Project), xAMp (INESC, Lisbon), Rampart
(AT&T Bell Labs), Phoenix (Swiss Federal Institute of
Technology, Lausanne), Relacs (University of Bologna),
Arjuna (University of Newcastle), and Ansaware (APM).

These systems differ in the multicast primitives they
provide and in their assumptions about the underly-
ing distributed system. For instance, Delta-4, xAMp,
and Arjuna assume a synchronous system with
bounded communication delays and process-relative
speeds. The others assume an asynchronous system.
Transis, Totem, Horus, Phoenix, and Relacs can han-
dle operations in a partitioned network. Rampart con-
siders malicious processes.

References
1. K. Birman, “The Process Group Approach to Reliable

Distributed Computing,” Comm. ACM, Dec. 1993,
pp. 37-53.

2. Special Section on Group Communication, D. Powell,
ed., Comm. ACM, Apr. 1996, pp. 50-97.

Application

Replication techniques

Group communication

Operating system

Figure 4. Group communication: the infrastructure for imple-
menting replication.

These properties refer to message delivery and not to
reception: A process sends a message, which is
received by a replica that coordinates with other repli-
cas to guarantee these properties. Finally, the replica
delivers the message. The replica performs the opera-
tion only after delivery of the message containing the
operation. We discuss TOCAST implementations in a
later section.

Atomicity and termination properties refer to cor-
rect replicas. The notion of correct replicas is a tricky
issue in a system model in which replicas can crash and
later recover. If replica xk crashes at some time t, it has
no obligation to deliver any message. Later at time
t′ > t, if xk recovers, it should deliver all messages mul-
ticast to gx before time t′. Yet how can it do so? The
state transfer mechanism handles this problem. When
replica xk recovers from a crash, the state transfer
mechanism allows xk to get (from another operational
replica xj in gx) an up-to-date state, which includes
delivery of all messages multicast to gx. We can use the
TOCAST primitive to implement state transfer.

Group communication and primary-backup replication
At first glance, the primary-backup technique

appears easier to implement than active replication.
Primary-backup replication does not require a TOCAST

primitive because the primary replica defines the invo-
cation order. Nevertheless, to correctly handle invo-
cations when the primary replica crashes, the
primary-backup technique requires a group commu-
nication primitive. This primitive is as difficult to
implement as TOCAST. Furthermore, the group must
define a new primary replica whenever the current one
crashes, so the primary-backup technique requires
dynamic groups, which active replication does not.

The sequence of views of group gx help define the
successive primary replicas for server x. For example,
for every view, we can define the primary replica as
the one with the smallest identification number. Given
vi(gx) = {x1, x2, x3}, the primary replica is x1. In the later
view vi+1(gx), which consists of x2 and x3, x2 becomes
the new primary replica. As the system delivers every
view to the correct members of gx, every replica can
determine the primary replica’s identity.

Having a sequence of views defining a group’s his-
tory actually makes it irrelevant (from a consistency
point of view) whether a replica removed from a view
has actually crashed or was incorrectly suspected of
doing so. In other words, whether the failure detec-
tion mechanism is reliable or not is irrelevant.
Unjustified exclusion of a replica decreases the ser-
vice’s fault-tolerance capability, but does not cause
inconsistency. If a member of gx suspects primary
replica xk in view vi(gx) of having crashed, and the
group defines new view vi+1(gx), xk can no longer act
as a primary replica. Interaction of xk with the backup
replicas in view vi+1(gx) reveals the new view (and new
primary replica) to xk.

To summarize, the primary-backup technique uses
the primary replica to order invocations, but requires
a mechanism that permits group members to agree on
a unique sequence of views. This agreement, however,
is insufficient to ensure the technique’s correctness.

Figure 5 illustrates an example that has an initial
view vi(gx) = {x1, x2, x3}; the primary replica is x1.

• Primary replica x1 receives an invocation, han-
dles it, and crashes while sending the update mes-
sage to backups x2 and x3. Only x2 receives the
update message.

Invocation

op(arg)

Client process pi

Group gx

Time

Primary replica x1

Backup replica x2

Backup replica x3

Update Ack

Crash
X

vi (gx) = {x1, x2, x3} vi +1(gx) = {x2, x3}

72 Computer

Figure 5. Primary-backup technique; the atomicity problem. Vertical dotted lines represent the time at which replicas deliver
new views.

April 1997 73

• The group defines new view vi+1(gx) = {x2,x3}; and
x2 becomes the new primary replica. The states
of x2 and x3 are inconsistent, however.

The inconsistency stems from the nonatomicity of
the update multicast sent by the primary to the backup
replicas. Some, but not all, of the backups might
receive the update message. We avoid this inconsis-
tency if, whenever the primary replica sends the update
message to the backups, either all or none of the cor-
rect (noncrashed) backups receive the message. This
atomicity semantics, in the context of a dynamic
group, is called view-synchronous multicast.5,6

View-synchronous multicast (VSCAST)
Dynamic group gx has sequence of views v0(gx), ...,

vi(gx), vi+1(gx), and so on. Let tk(i) be the local time at
which replica xk delivers view vi(gx). From tk(i) on, and
until xk delivers next view vi+1(gx), xk time stamps all
its messages with current-view number i. Message
m(i) is message m with a time stamp for view i.

Let replica xk multicast message m(i) to all members
of view vi(gx). View-synchronous multicast (provided
by primitive VSCAST) ensures that either all replicas of
vi(gx) eventually deliver m(i) or that the system defines
a new view, vi+1(gx). In the latter case, VSCAST ensures
that either all of the replicas in vi(gx) ∩ vi+1(gx) deliver
m(i) before delivering vi+1(gx) or none deliver m(i).

Figure 6 illustrates the definition. In the first sce-
nario, the sender does not crash, and all the replicas
deliver m(i). In scenarios 2 and 3, the primary replica
crashes, and the system defines a new view. In sce-
nario 2, all the replicas in vi(gx) ∩ vi+1(gx) deliver m(i)
before delivering new view vi+1(gx). In scenario 3, no
replica in vi(gx) ∩ vi+1(gx) delivers m(i). In scenario 4,

one replica delivers m(i) in vi(gx) and one delivers it in
vi+1(gx). VSCAST semantics prevent scenario 4.

GROUP COMMUNICATION
AND CONSENSUS

Several papers have described various implementa-
tions of the TOCAST and VSCAST primitives.
Nevertheless, most of these implementations neglect
liveness issues; that is, they do not specify the assump-
tions under which the given algorithms terminate. This
is unsatisfactory in many applications, including
safety-critical applications. Liveness is a difficult issue,
directly related to the impossibility of solving the con-
sensus problem in asynchronous distributed systems.
Implementing TOCAST and VSCAST comes down to
solving this problem. For more information, see the
“Consensus in Asynchronous Systems with Unreliable
Failure Detectors” sidebar, next page.

With failure detectors, we can use the solution to
the consensus problem to implement TOCAST and
VSCAST primitives. This leads to implementations that
clearly specify the minimal conditions that guarantee
termination.

One algorithm implements TOCAST based on con-
sensus.7 This algorithm launches multiple, independent
instances of the consensus problem, identified by integer
k. Each of these k consensus instances decides on a batch
of messages, batch(k). The processes deliver batch(k)
messages before batch(k+1) messages. They also deliver
the messages of batch(k) in some deterministic order
(the order defined by their identifiers, for example).

The transformation from view-synchronous multi-
cast (VSCAST) to consensus is more complicated than
the transformation from TOCAST to consensus. The
solution also consists of launching multiple, indepen-

Time

 x1

 x2

 x3

Time

 x1

 x2

 x3

vi (gx) = {x1, x2, x3}

vi (gx) = {x1, x2, x3} vi +1(gx) = {x2, x3}

(a)

(c)

m(i)

m(i) Crash
X

Time

 x1

 x2

 x3

Time

 x1

 x2

 x3

vi (gx) = {x1, x2, x3}

vi (gx) = {x1, x2, x3} vi +1(gx) = {x2, x3}

vi +1(gx) = {x2, x3}

(b)

(d)

m(i)

m(i) Crash
X

Crash
X

Figure 6. View-
synchronous
multicast. VSCAST

allows scenarios 1
(a), 2 (b), and 3 (c),
but prevents scenario
4 (d).

74 Computer

dent instances of consensus. However, consensus k
decides not only on a batch(k), but also on the next
view’s membership. Each process, after learning the
decision of consensus k, delivers the remaining, unde-
livered messages of batch(k) and then delivers the next
view. We discuss the details in an earlier work.8

T he relationships we have discussed between, for
example, primary-backup replication and view-
synchronous multicast, illustrate the convergence

of replication techniques and group communications.
These relationships clarify some important issues in
fault-tolerant distributed systems. Combined with the
link between group communications and the consensus
problem, they will certainly lead to interesting devel-
opments and new modular implementations. ❖

References
1. M. Herlihy and J. Wing, “Linearizability: A Correctness

Condition for Concurrent Objects,” ACM Trans. Pro-
gramming Languages and Systems, July 1990, pp. 463-
492.

2. N. Budhiraja et al., “The Primary-Backup Approach,”
in Distributed Systems, S. Mullender, ed., ACM Press,
New York, 1993, pp. 199-216.

3. F.B. Schneider, “Replication Management Using the
State-Machine Approach,” in Distributed Systems, S.
Mullender, ed., ACM Press, New York, 1993, pp. 169-
197.

4. A.M. Ricciardi and K.P. Birman, “Using Process Groups
to Implement Failure Detection in Asynchronous Envi-
ronments,” Proc. 10th ACM Symp. Principles Distributed
Computing, ACM Press, New York, 1991, pp. 341-352.

5. K. Birman, A. Schiper, and P. Stephenson, “Lightweight
Causal and Atomic Group Multicast,” ACM Trans.

Consensus in Asynchronous Systems
with Unreliable Failure Detectors

We define the consensus problem over set of processes P. Every
process pi in P initially proposes a value vi taken from a set of pos-
sible values. The processes in P have to decide on a common value
v, such that the following properties hold1:

• Agreement. No two correct processes decide on different val-
ues.

• Validity. If a process decides on v, then some process pro-
posed v.

• Termination. Each correct process eventually makes a deci-
sion.

In 1985, Michael Fischer, Nancy Lynch, and Michael Paterson
showed that no deterministic algorithm solves consensus in an
asynchronous system in which even a single process can crash.2

Known as the FLP impossibility result, it also applies to the total-
order and view-synchronous multicast problems. Adding time-
outs to the asynchronous model to detect crashed processes is
insufficient to overcome the impossibility result, and additional
assumptions about suspicions are needed. Tushar Chandra and
Sam Toueg stated these assumptions in their 1991 work on unre-

liable failure detectors.1 Their model attaches a failure detector
module to every process in the system. Each of these modules
maintains a list of processes currently suspected to have crashed.

Chandra and Toueg defined various classes of failure detectors.
Among these, the class of eventually strong failure detectors,
denoted ◊S, is of particular interest. The properties of this class are
strong completeness and eventual weak accuracy.

The ◊S failure detector class allows us to solve consensus in an
asynchronous system with a majority of correct processes.1 In sit-
uations in which no process is suspected and no process crashes
(the most frequent case in practice), solving consensus requires
three communication steps (phases). We can even optimize the
algorithm to require only two communication steps.3

References
1. T. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable

Distributed Systems,” J. ACM, Mar. 1996, pp. 225-267.
2. M. Fischer, N. Lynch, and M. Paterson, “Impossibility of Distrib-

uted Consensus with One Faulty Process,” J. ACM, Apr. 1985, pp.
374-382.

3. A. Schiper, “Early Consensus in an Asynchronous System with a
Weak Failure Detector,” Distributed Computing, Mar./Apr. 1997.

Computer Systems, Aug. 1991, pp. 272-314.
6. A. Schiper and A. Sandoz, “Uniform Reliable Multicast

in a Virtually Synchronous Environment,” Proc. IEEE
13th Int’l Conf. Distributed Computing Systems, IEEE
CS Press, Los Alamitos, Calif., 1993, pp. 561-568.

7. T.D. Chandra and S. Toueg, “Unreliable Failure Detec-
tors for Reliable Distributed Systems,” J. ACM, Mar.
1996, pp. 225-267.

8. R. Guerraoui and A. Schiper, “Consensus Service: A
Modular Approach for Building Agreement Protocols
in Distributed Systems,” Proc. IEEE 26th Int’l Symp.
Fault-Tolerant Computing, IEEE CS Press, Los Alami-
tos, Calif., 1996, pp. 168-177.

Rachid Guerraoui is a lecturer and research associate
at the Federal Institute of Technology in Lausanne
(EPFL). His current research interests are fault-tol-
erant distributed systems, transactional systems, and
object-oriented computing. Guerraoui received a PhD
in computer science from the University of Orsay,
France.

André Schiper is a professor of computer science at the
EPFL and leads the Operating Systems Laboratory.
His current research interests are in fault-tolerant dis-
tributed systems and group communication, which
have led to development of the Phoenix group com-
munication middleware. He is a member of the ESPRIT

Basic Research Network of Excellence in Distributed
Computing Systems Architectures (CaberNet).

Contact Guerraoui or Schiper at Département d’In-
formatique, Ecole Polytechnique Fédérale de Lau-
sanne, 1015 Lausanne, Switzerland; guerraoui@
di.epfl.ch; schiper@di.epfl.ch.

