Evolution

Genetic Algorithms search by simulating evolution, starting from an initial set of solutions or hypotheses, and generating successive "generations" of solutions. This particular branch of AI was inspired by the way living things evolved into more successful organisms in nature. The main idea is survival of the fittest, a.k.a. natural selection.

A chromosome is a long, complicated thread of DNA (deoxyribonucleic acid). Hereditary factors that determine particular traits of an individual are strung along the length of these chromosomes, like beads on a necklace. Each trait is coded by some combination of DNA (there are four bases, A (Adenine), C (Cytosine), T (Thymine) and G (Guanine). Like an alphabet in a language, meaningful combinations of the bases produce specific instructions to the cell.

Changes occur during reproduction. The chromosomes from the parents exchange randomly by a process called crossover. Therefore, the offspring exhibit some traits of the father and some traits of the mother.

A rarer process called mutation also changes some traits. Sometimes an error may occur during copying of chromosomes (mitosis). The parent cell may have -A-C-G-C-T- but an accident may occur and changes the new cell to -A-C-T-C-T-. Much like a typist copying a book, sometimes a few mistakes are made. Usually this results in a nonsensical word and the cell does not survive. But over millions of years, sometimes the accidental mistake produces a more beautiful phrase for the book, thus producing a better species.