aima.learning.neural
Class FeedForwardNeuralNetwork
java.lang.Object
aima.learning.neural.FeedForwardNeuralNetwork
- All Implemented Interfaces:
- FunctionApproximator
public class FeedForwardNeuralNetwork
- extends java.lang.Object
- implements FunctionApproximator
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
UPPER_LIMIT_WEIGHTS
public static final java.lang.String UPPER_LIMIT_WEIGHTS
- See Also:
- Constant Field Values
LOWER_LIMIT_WEIGHTS
public static final java.lang.String LOWER_LIMIT_WEIGHTS
- See Also:
- Constant Field Values
NUMBER_OF_OUTPUTS
public static final java.lang.String NUMBER_OF_OUTPUTS
- See Also:
- Constant Field Values
NUMBER_OF_HIDDEN_NEURONS
public static final java.lang.String NUMBER_OF_HIDDEN_NEURONS
- See Also:
- Constant Field Values
NUMBER_OF_INPUTS
public static final java.lang.String NUMBER_OF_INPUTS
- See Also:
- Constant Field Values
FeedForwardNeuralNetwork
public FeedForwardNeuralNetwork(NNConfig config)
FeedForwardNeuralNetwork
public FeedForwardNeuralNetwork(Matrix hiddenLayerWeights,
Vector hiddenLayerBias,
Matrix outputLayerWeights,
Vector outputLayerBias)
processError
public void processError(Vector error)
- Specified by:
processError
in interface FunctionApproximator
processInput
public Vector processInput(Vector input)
- Specified by:
processInput
in interface FunctionApproximator
trainOn
public void trainOn(NNDataSet innds,
int numberofEpochs)
predict
public Vector predict(NNExample nne)
testOnDataSet
public int[] testOnDataSet(NNDataSet nnds)
testOn
public void testOn(DataSet ds)
getHiddenLayerWeights
public Matrix getHiddenLayerWeights()
getHiddenLayerBias
public Vector getHiddenLayerBias()
getOutputLayerWeights
public Matrix getOutputLayerWeights()
getOutputLayerBias
public Vector getOutputLayerBias()
getHiddenLayer
public Layer getHiddenLayer()
getOutputLayer
public Layer getOutputLayer()
setTrainingScheme
public void setTrainingScheme(NNTrainingScheme trainingScheme)